Zacytuj

Wei K, Qiu M, Zhang R, Zhou L, Zhang T, Yao M, Luo C. Single Living yEast PM Toxicity Sensor (SLEPTor) system. J Aerosol Sci. 2017; 107: 65–73. WeiK QiuM ZhangR ZhouL ZhangT YaoM LuoC Single Living yEast PM Toxicity Sensor (SLEPTor) system J Aerosol Sci. 2017 107 65 73 10.1016/j.jaerosci.2017.02.006 Search in Google Scholar

Roslev P, Lentz T, Hesselsoe M. Microbial toxicity of methyl tert-butyl ether (MTBE) determined with fluorescent and luminescent bioassays. Chemosphere. 2015; 120: 284–291. RoslevP LentzT HesselsoeM Microbial toxicity of methyl tert-butyl ether (MTBE) determined with fluorescent and luminescent bioassays Chemosphere. 2015 120 284 291 10.1016/j.chemosphere.2014.07.00325128634 Search in Google Scholar

Hani U, Shivakumar HG, Vaghela R, Osmani RA, Shrivastava A. Candidiasis: A fungal infection-current challenges and progress in prevention and treatment. Infect Disord Drug Targets. 2015; 15: 42–52. HaniU ShivakumarHG VaghelaR OsmaniRA ShrivastavaA Candidiasis: A fungal infection-current challenges and progress in prevention and treatment Infect Disord Drug Targets. 2015 15 42 52 10.2174/187152651566615032016203625809621 Search in Google Scholar

Krcmery V, Barnes AJ. Non-albicans Candida spp. causing fungaemia: Pathogenicity and antifungal resistance. J Hosp Infect. 2002; 50: 243–260. KrcmeryV BarnesAJ Non-albicans Candida spp. causing fungaemia: Pathogenicity and antifungal resistance J Hosp Infect. 2002 50 243 260 10.1053/jhin.2001.115112014897 Search in Google Scholar

Singh A, Healey KR, Yadav P, Upadhyaya G, Sachdeva N, Sarma S, Kumar A, Tarai B, Perlin DS, Chowdhary A. Absence of azole or echinocandin resistance in Candida glabrata isolates in India despite background prevalence of strains with defects in the DNA mismatch repair pathway. Antimicrob Agents Chemother. 2018; 62: e00195–18. SinghA HealeyKR YadavP UpadhyayaG SachdevaN SarmaS KumarA TaraiB PerlinDS ChowdharyA Absence of azole or echinocandin resistance in Candida glabrata isolates in India despite background prevalence of strains with defects in the DNA mismatch repair pathway Antimicrob Agents Chemother. 2018 62 e00195 18 10.1128/AAC.00195-18597159629610199 Search in Google Scholar

de Groot PW, Kraneveld EA, Yin QY, Dekker HL, Groß U, Crielaard W, de Koster CG, Bader O, Klis FM, Weig M. The cell wall of the human pathogen Candida glabrata: Differential incorporation of novel adhesin-like wall proteins. Eukaryot Cell. 2008; 7: 1951–1964. de GrootPW KraneveldEA YinQY DekkerHL GroßU CrielaardW de KosterCG BaderO KlisFM WeigM The cell wall of the human pathogen Candida glabrata: Differential incorporation of novel adhesin-like wall proteins Eukaryot Cell. 2008 7 1951 1964 10.1128/EC.00284-08258353618806209 Search in Google Scholar

Fox EP, Nobile CJ. A sticky situation: Untangling the transcriptional network controlling biofilm development in Candida albicans. Transcription. 2012; 3: 315–322. FoxEP NobileCJ A sticky situation: Untangling the transcriptional network controlling biofilm development in Candida albicans Transcription. 2012 3 315 322 10.4161/trns.22281363018823117819 Search in Google Scholar

Cornely OA, Bassetti M, Calandra T, Garbino J, Kullberg BJ, Lortholary O, Meersseman W, Akova M, Arendrup MC, Arikan-Akdagli S, et al. ESCMID* guideline for the diagnosis and management of Candida diseases 2012: Non-neutropenic adult patients. Clin Microbiol Infect. 2012; 18: 19–37. CornelyOA BassettiM CalandraT GarbinoJ KullbergBJ LortholaryO MeerssemanW AkovaM ArendrupMC Arikan-AkdagliS ESCMID* guideline for the diagnosis and management of Candida diseases 2012: Non-neutropenic adult patients Clin Microbiol Infect. 2012 18 19 37 10.1111/1469-0691.1203923137135 Search in Google Scholar

Calderone RA, Fonzi WA. Virulence factors of Candida albicans. Trends Microbiol. 2001; 9: 327–335. CalderoneRA FonziWA Virulence factors of Candida albicans Trends Microbiol. 2001 9 327 335 10.1016/S0966-842X(01)02094-7 Search in Google Scholar

Naglik J, Albrecht A, Bader O, Hube B. Candida albicans proteinases and host/pathogen interactions. Cel. Microbiol. 2004; 6: 915–926. NaglikJ AlbrechtA BaderO HubeB Candida albicans proteinases and host/pathogen interactions Cel. Microbiol. 2004 6 915 926 10.1111/j.1462-5822.2004.00439.x15339267 Search in Google Scholar

Kadry AA, El-Ganiny AM, El-Baz AM. Relationship between Sap prevalence and biofilm formation among resistant clinical isolates of Candida albicans. Afr Health Sci. 2018; 18: 1166–1174. KadryAA El-GaninyAM El-BazAM Relationship between Sap prevalence and biofilm formation among resistant clinical isolates of Candida albicans Afr Health Sci. 2018 18 1166 1174 10.4314/ahs.v18i4.37635488830766582 Search in Google Scholar

Alfonso-Gordillo G, Flores-Ortiz CM, Morales-Barrera L, Cristiani-Urbina E. Biodegradation of methyl tertiary butyl ether (MTBE) by a microbial consortium in a continuous up-flow packed-bed biofilm reactor: Kinetic study, metabolite identification and toxicity bioassays. PLoS One. 2016; 11: e0167494. Alfonso-GordilloG Flores-OrtizCM Morales-BarreraL Cristiani-UrbinaE Biodegradation of methyl tertiary butyl ether (MTBE) by a microbial consortium in a continuous up-flow packed-bed biofilm reactor: Kinetic study, metabolite identification and toxicity bioassays PLoS One. 2016 11 e0167494 10.1371/journal.pone.0167494513233227907122 Search in Google Scholar

Salimi A, Vaghar-Moussavi M, Seydi E, Pourahmad J. Toxicity of methyl tertiary-butyl ether on human blood lymphocytes. Environ Sci Pollut Res Int. 2016; 23: 8556–8564. SalimiA Vaghar-MoussaviM SeydiE PourahmadJ Toxicity of methyl tertiary-butyl ether on human blood lymphocytes Environ Sci Pollut Res Int. 2016 23 8556 8564 10.1007/s11356-016-6090-x26797945 Search in Google Scholar

Juwono H, Yamin A, Alfian R, Ni’mah YL, Harmami H. Production of liquid fuel from plastic waste with co-reactan nyamplung oil (callophyllum inophyllum) and its performance in gasoline machine by adding MTBE additive. AIP Conf Proc. 2018; 2049: 020081 JuwonoH YaminA AlfianR Ni’mahYL HarmamiH Production of liquid fuel from plastic waste with co-reactan nyamplung oil (callophyllum inophyllum) and its performance in gasoline machine by adding MTBE additive AIP Conf Proc. 2018 2049 020081 10.1063/1.5082486 Search in Google Scholar

Hube B, Sanglard D, Odds FC, Hess D, Monod M, Schäfer W, Brown AJ, Gow NA. Disruption of each of the secreted aspartyl proteinase genes SAP1, SAP2, and SAP3 of Candida albicans attenuates virulence. Infect Immun. 1997; 65: 3529–3538. HubeB SanglardD OddsFC HessD MonodM SchäferW BrownAJ GowNA Disruption of each of the secreted aspartyl proteinase genes SAP1, SAP2, and SAP3 of Candida albicans attenuates virulence Infect Immun. 1997 65 3529 3538 10.1128/iai.65.9.3529-3538.19971755039284116 Search in Google Scholar

Modrzewska B, Kurnatowski P, Khalid K. Comparison of proteolytic activity of Candida sp. strains depending on their origin. J Mycol Med. 2016; 26: 138–147. ModrzewskaB KurnatowskiP KhalidK Comparison of proteolytic activity of Candida sp. strains depending on their origin J Mycol Med. 2016 26 138 147 10.1016/j.mycmed.2016.01.00526922385 Search in Google Scholar

de Barros PP, Freire F, Rossoni RD, Junqueira JC, Jorge AO. Candida krusei and Candida glabrata reduce the filamentation of Candida albicans by downregulating expression of HWP1 gene. Folia Microbiol. 2017; 62: 317–323. de BarrosPP FreireF RossoniRD JunqueiraJC JorgeAO Candida krusei and Candida glabrata reduce the filamentation of Candida albicans by downregulating expression of HWP1 gene Folia Microbiol. 2017 62 317 323 10.1007/s12223-017-0500-428164244 Search in Google Scholar

Feng W, Yang J, Wang Y, Chen J, Xi Z, Qiao Z. ERG11 mutations and up-regulation in clinical itraconazole-resistant isolates of Candida krusei. Can J Microbiol. 2016; 62: 938–943. FengW YangJ WangY ChenJ XiZ QiaoZ ERG11 mutations and up-regulation in clinical itraconazole-resistant isolates of Candida krusei Can J Microbiol. 2016 62 938 943 10.1139/cjm-2016-005527622981 Search in Google Scholar

Gallegos-García V, Pan SJ, Juárez-Cepeda J, Ramírez-Zavaleta CY, Martin-del-Campo MB, Martínez-Jiménez V, Castaño I, Cormack B, De Las Peñas A. A novel downstream regulatory element cooperates with the silencing machinery to repress EPA1 expression in Candida glabrata. Genetics. 2012; 190: 1285–1297. Gallegos-GarcíaV PanSJ Juárez-CepedaJ Ramírez-ZavaletaCY Martin-del-CampoMB Martínez-JiménezV CastañoI CormackB De Las PeñasA A novel downstream regulatory element cooperates with the silencing machinery to repress EPA1 expression in Candida glabrata Genetics. 2012 190 1285 1297 10.1534/genetics.111.138099331664322234857 Search in Google Scholar

Zhu SL, Yan L, Zhang YX, Jiang ZH, Gao PH, Qiu Y, Wang L, Zhao MZ, Ni TJ, Cai Z, et al.: Berberine inhibits fluphenazine-induced up-regulation of CDR1 in Candida albicans. Biol Pharm Bull. 2014; 37: 268–273. ZhuSL YanL ZhangYX JiangZH GaoPH QiuY WangL ZhaoMZ NiTJ CaiZ Berberine inhibits fluphenazine-induced up-regulation of CDR1 in Candida albicans Biol Pharm Bull. 2014 37 268 273 10.1248/bpb.b13-0073424492724 Search in Google Scholar

Tobal JM, da Silva Ferreina Balieiro ME. Role of carbonic anhydrases in pathogenic micro-organisms: A focus on Aspergillus fumigatus. J Med Microbiol. 2014; 63: 15–27. TobalJM da Silva Ferreina BalieiroME Role of carbonic anhydrases in pathogenic micro-organisms: A focus on Aspergillus fumigatus J Med Microbiol. 2014 63 15 27 10.1099/jmm.0.064444-024149624 Search in Google Scholar

Levin DE. Regulation of cell wall biogenesis in Saccharomyces cerevisiae: The cell wall integrity signaling pathway. Genetics. 2011; 189: 1145–1175. LevinDE Regulation of cell wall biogenesis in Saccharomyces cerevisiae: The cell wall integrity signaling pathway Genetics. 2011 189 1145 1175 10.1534/genetics.111.128264324142222174182 Search in Google Scholar

Ikezaki S., Cho T, Nagao JI, Tasaki S, Yamaguchi M, Arita-Morioka KI, Yasumatsu K, Chibana H, Ikebe T, Tanaka Y. Mild heat stress affects on the cell wall structure in Candida albicans biofilm. Med Mycol J. 2019; 60: 29–37. IkezakiS. ChoT NagaoJI TasakiS YamaguchiM Arita-MoriokaKI YasumatsuK ChibanaH IkebeT TanakaY Mild heat stress affects on the cell wall structure in Candida albicans biofilm Med Mycol J. 2019 60 29 37 10.3314/mmj.19-0000131155569 Search in Google Scholar

Abu El-Asrar AM, Missotten L, Geboes K. Expression of hypoxiainducible factor-1α and the protein products of its target genes in diabetic fibrovascular epiretinal membranes. Br J Ophthalmol. 2007; 91: 822–826. Abu El-AsrarAM MissottenL GeboesK Expression of hypoxiainducible factor-1α and the protein products of its target genes in diabetic fibrovascular epiretinal membranes Br J Ophthalmol. 2007 91 822 826 10.1136/bjo.2006.109876195557117229797 Search in Google Scholar

Du H, Guan G, Xie J, Cottier F, Sun Y, Jia W, Mühlschlegel FA, Huang G. The transcription factor Flo8 mediates CO2 sensing in the human fungal pathogen Candida albicans. Mol Biol Cell. 2012; 23: 2692–2701. DuH GuanG XieJ CottierF SunY JiaW MühlschlegelFA HuangG The transcription factor Flo8 mediates CO2 sensing in the human fungal pathogen Candida albicans Mol Biol Cell. 2012 23 2692 2701 10.1091/mbc.e12-02-0094 Search in Google Scholar

Sasani E, Khodavaisy S, Agha Kuchak Afshari S, Darabian S, Aala F, Rezaie S. Pseudohyphae formation in Candida glabrata due to CO2 exposure. Curr Med Mycol. 2016; 2: 49–52. SasaniE KhodavaisyS Agha Kuchak AfshariS DarabianS AalaF RezaieS Pseudohyphae formation in Candida glabrata due to CO2 exposure Curr Med Mycol. 2016 2 49 52 10.18869/acadpub.cmm.2.4.49561169728959796 Search in Google Scholar

Yazdanparast SA, Barton RC. Arthroconidia production in Trichophyton rubrum and a new ex vivo model of onychomycosis. J Med Microbiol. 2006; 55: 1577–1581. YazdanparastSA BartonRC Arthroconidia production in Trichophyton rubrum and a new ex vivo model of onychomycosis J Med Microbiol. 2006 55 1577 1581 10.1099/jmm.0.46474-017030919 Search in Google Scholar

Papagianni M. Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv. 2004; 22: 189–259. PapagianniM Fungal morphology and metabolite production in submerged mycelial processes Biotechnol Adv. 2004 22 189 259 10.1016/j.biotechadv.2003.09.00514665401 Search in Google Scholar

Coelho M, Belo I, Pinheiro R, Amaral A, Mota M, Coutinho J, Ferreira E. Effect of hyperbaric stress on yeast morphology: Study by automated image analysis. Appl Microbiol Biotechnol. 2004; 66: 318–324. CoelhoM BeloI PinheiroR AmaralA MotaM CoutinhoJ FerreiraE Effect of hyperbaric stress on yeast morphology: Study by automated image analysis Appl Microbiol Biotechnol. 2004 66 318 324 10.1007/s00253-004-1648-915257421 Search in Google Scholar

Shimoda M, Cocunubo-Castellanos J, Kago H, Miyake M, Osajima Y, Hayakawa I. The influence of dissolved CO2 concentration on the death kinetics of Saccharomyces cerevisiae. J Appl Microbiol. 2001; 91: 306–311. ShimodaM Cocunubo-CastellanosJ KagoH MiyakeM OsajimaY HayakawaI The influence of dissolved CO2 concentration on the death kinetics of Saccharomyces cerevisiae J Appl Microbiol. 2001 91 306 311 10.1046/j.1365-2672.2001.01386.x11473595 Search in Google Scholar

Tupa PR, Masuda H. Genomic analysis of propane metabolism in methyl tert-butyl ether-degrading Mycobacterium sp. strain ENV421. J Genomics. 2018; 6: 24–29. TupaPR MasudaH Genomic analysis of propane metabolism in methyl tert-butyl ether-degrading Mycobacterium sp. strain ENV421 J Genomics. 2018 6 24 29 10.7150/jgen.24929586508229576806 Search in Google Scholar

Graybill JR. The long and the short of antifungal therapy. Infect Dis Clin North Am. 1988; 2: 805–825. GraybillJR The long and the short of antifungal therapy Infect Dis Clin North Am. 1988 2 805 825 10.1016/S0891-5520(20)30229-4 Search in Google Scholar

Harvey RJ, Lund VJ. Biofilms and chronic rhinosinusitis: Systematic review of evidence, current concepts and directions for research. Rhinology. 2007; 45: 3–13. HarveyRJ LundVJ Biofilms and chronic rhinosinusitis: Systematic review of evidence, current concepts and directions for research Rhinology. 2007 45 3 13 Search in Google Scholar

Silva S, Henriques M, Martins A, Oliveira R, Williams D, Azeredo J. Bio-films of non-Candida albicans Candida species: Quantification, structure and matrix composition. Med Mycol. 2009; 47: 681–689. SilvaS HenriquesM MartinsA OliveiraR WilliamsD AzeredoJ Bio-films of non-Candida albicans Candida species: Quantification, structure and matrix composition Med Mycol. 2009 47 681 689 10.3109/1369378080254959419888800 Search in Google Scholar

Fonseca E, Silva S, Rodrigues CF, Alves CT, Azeredo J, Henriques M. Effects of fluconazole on Candida glabrata biofilms and its relationship with ABC transporter gene expression. Biofouling. 2014; 30: 447–457. FonsecaE SilvaS RodriguesCF AlvesCT AzeredoJ HenriquesM Effects of fluconazole on Candida glabrata biofilms and its relationship with ABC transporter gene expression Biofouling. 2014 30 447 457 10.1080/08927014.2014.88610824645630 Search in Google Scholar

Pettit RK, Repp KK, Hazen KC. Temperature affects the susceptibility of Cryptococcus neoformans biofilms to antifungal agents. Med Mycol J. 2010; 48: 421–426. PettitRK ReppKK HazenKC Temperature affects the susceptibility of Cryptococcus neoformans biofilms to antifungal agents Med Mycol J. 2010 48 421 426 10.1080/1369378090313687919637092 Search in Google Scholar

Akins RA. An update on antifungal targets and mechanisms of resistance in Candida albicans. Med Mycol J. 2005; 43: 285–318. AkinsRA An update on antifungal targets and mechanisms of resistance in Candida albicans Med Mycol J. 2005 43 285 318 10.1080/1369378050013897116110776 Search in Google Scholar

Klis FM, De Groot P, Brul S. 13 identification, characterization, and phenotypic analysis of covalently linked cell wall proteins. Methods Microbiol. 2007; 36: 281–301. KlisFM De GrootP BrulS 13 identification, characterization, and phenotypic analysis of covalently linked cell wall proteins Methods Microbiol. 2007 36 281 301 10.1016/S0580-9517(06)36013-8 Search in Google Scholar

Newport G, Agabian N. KEX2 influences Candida albicans proteinase secretion and hyphal formation. J Biol Chem. 1997; 272: 28954–28961. NewportG AgabianN KEX2 influences Candida albicans proteinase secretion and hyphal formation J Biol Chem. 1997 272 28954 28961 10.1074/jbc.272.46.289549360967 Search in Google Scholar

Dabiri S, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M. SAP (1-3) gene expression in high proteinase producer Candida species strains isolated from Iranian patients with different Candidosis. J Pure Appl Microbiol. 2016; 10: 1891–1896. DabiriS Shams-GhahfarokhiM Razzaghi-AbyanehM SAP (1-3) gene expression in high proteinase producer Candida species strains isolated from Iranian patients with different Candidosis J Pure Appl Microbiol. 2016 10 1891 1896 Search in Google Scholar

Lone SA, Khan S, Ahmad A. Inhibition of ergosterol synthesis in Candida albicans by novel eugenol tosylate congeners targeting sterol 14α-demethylase (CYP51) enzyme. Arch Microbiol. 2020; 202: 711–726. LoneSA KhanS AhmadA Inhibition of ergosterol synthesis in Candida albicans by novel eugenol tosylate congeners targeting sterol 14α-demethylase (CYP51) enzyme Arch Microbiol. 2020 202 711 726 10.1007/s00203-019-01781-231786635 Search in Google Scholar

eISSN:
1732-2693
Język:
Angielski
Częstotliwość wydawania:
Volume Open
Dziedziny czasopisma:
Life Sciences, Molecular Biology, Microbiology and Virology, Medicine, Basic Medical Science, Immunology