1. bookTom 20 (2020): Zeszyt 2 (June 2020)
Informacje o czasopiśmie
Pierwsze wydanie
23 Sep 2008
Częstotliwość wydawania
4 razy w roku
Otwarty dostęp

Development in PTA Surface Modifications – A Review

Data publikacji: 12 Jun 2020
Tom & Zeszyt: Tom 20 (2020) - Zeszyt 2 (June 2020)
Zakres stron: 39 - 53
Informacje o czasopiśmie
Pierwsze wydanie
23 Sep 2008
Częstotliwość wydawania
4 razy w roku

1. Burakowski T., Wierzchoń T., Surface engineering of metals – principles, equipment, technologies, CRC Press (1999).10.1201/9781420049923Search in Google Scholar

2. Bach F.W., Mohwald K., Laarmann A., Wenz T., Modern surface technology, Wiley-VCH, Verlag GmbH, (2004).Search in Google Scholar

3. Pawłowski L., The science and engineering of thermal spray coatings, 2nd ed., Wiley, Chichester, England, (2008).Search in Google Scholar

4. Kobayashi T., Maruyama T., Kano M., Characterization of pure aluminum and zinc sprayed coatings produced by flame spraying, Materials Transactions 44 (2003) 2711-2717.10.2320/matertrans.44.2711Search in Google Scholar

5. Czupryński A., Flame spraying of aluminum coatings reinforced with particles of carbonaceous materials as an alternative for laser cladding technologies, Materials 12 (2019) 3467.Search in Google Scholar

6. Gedzevicius I., Valiulis A.V., Analysis of wire arc spraying process variables on coatings properties, Journal of Materials Processing Technology, 175 (2006) 206-211.Search in Google Scholar

7. Chmielewski T., Siwek P., Chmielewski M., Piątkowska A., Grabias A., Golański D., Structure and selected properties of arc sprayed coatings containing in-situ fabricated Fe-Al intermetallic phases, Metals 8 (2018) 1059.Search in Google Scholar

8. Karger M., Vassen R., Stoever D., Atmospheric plasma sprayed thermal barrier coatings with high segmentation crack densities: Spraying process, microstructure and thermal cycling behaviour, Surface and Coatings Technology, 206 (2011) 16-23.Search in Google Scholar

9. Łatka L., Szala M., Michalak M., Pałka T., Impact of atmospheric plasma spray parameters on cavitation erosion resistance of Al2O3–13% TiO2 coatings, Acta Physica Polonica A, 136 (2019) 342-347.Search in Google Scholar

10. Poirier D., Legoux J.G., Lima R.S., Engineering HVOF-sprayed Cr3C2-NiCr coatings: The effect of particle morphology and spraying parameters on the microstructure, properties, and high temperature wear performance, Journal of Thermal Spray Technology, 22 (2013) 280-289.Search in Google Scholar

11. Myalska H., Szymański K., Moskal G., Microstructure and selected properties of WC-Co-Cr coatings deposited by high velocity thermal spray processes, Solid State Phenomena, 246 (2016) 117-122.Search in Google Scholar

12. Melendez N.M., McDonald A.G., Development of WC-based metal matrix composite coatings using low-pressure cold gas dynamic spraying, Surface and Coatings Technology, 214 (2013) 101-109.Search in Google Scholar

13. Winnicki M., Baszczuk A., Jasiorski M., Małachowska A., corrosion resistance of copper coatings deposited by cold spraying, Journal of Thermal Spray Technology, 26 (2017) 1935-1946.Search in Google Scholar

14. Tomków J., Czupryński A., Fydrych D., The abrasive wear resistance of coatings manufactured on high-strength low-alloy (HSLA) offshore steel in wet welding conditions, Coatings, 10 (2020) 219.Search in Google Scholar

15. Gunther K., Bergmann J.P., Suchodoll D., Hot wire-assisted gas metal arc welding of hypereutectic FeCrC hardfacing alloys: Microstructure and wear properties, Surface and Coatings Technology, 334 (2018) 420-428.10.1016/j.surfcoat.2017.11.059Search in Google Scholar

16. Xinhong W., Lin C., Min Z., Zengda Z., Fabrication of multiple carbide particles reinforced Fe-based surface hardfacing layer produced by gas tungsten arc welding process, Surface and Coatings Technology, 203 (2009) 976-980.Search in Google Scholar

17. Tsai H.L., Tarng Y.S., Tseng C.M., Optimisation of submerged arc welding process parameters in hardfacing, International Journal of Advanced Manufacturing Technology, 12 (1996) 402-406.Search in Google Scholar

18. Goswami G.L., Kumari S., Galun R., Mordike B.L., Laser cladding of Ni - Mo alloys for hardfacing applications, Lasers in Engineering, 13 (2003) 1-12.Search in Google Scholar

19. Lisiecki A., Ślizak D., Kukofka A., Laser cladding of co-based metallic powder at cryogenic conditions, Journal of Achievements in Materials and Manufacturing Engineering, 95 (2019) 20-31.Search in Google Scholar

20. Gnyusov S.F., Ignatov A.A., Durakov V.G., Tarasov S.Y., The effect of thermal cycling by electron-beam surfacing on structure and wear resistance of deposited M2 steel, Applied Surface Science, 263 (2012) 215-222.Search in Google Scholar

21. Alhattab A.A.M., Dilawary S.A.A., Motallebzadeh A., Arisoy C.F., Cimenoglu H., Effect of electron beam surface melting on the microstructure and wear behavior of Stellite 12 hardfacing, Industrial Lubrication and Tribology, 71 (2019) 636-641.Search in Google Scholar

22. Jeremic L., Dordevic B., Sedmak S., Sedmak A., Rakin M., Arandelovic M., Effect of plasma hardfacing and carbides presence on the occurrence of cracks and microcracks, Structural Integrity and Life, 18 (2018) 99-103.Search in Google Scholar

23. Veinthal R., Sergejev F., Zikin A., Tarbe R., Hornung J., Abrasive impact wear and surface fatigue wear behaviour of Fe–Cr–C PTA overlays, Wear, 301 (2013) 102-108.Search in Google Scholar

24. Rohan P., Boxanova M., Zhang L., Kramar T., Lukac F., High speed steel deposited by pulsed PTA – frequency influence, Proceedings to International Thermal Spray Conference, Dusseldorf, Germany (2017).Search in Google Scholar

25. Zakin A., Hussainova I., Katsich C., Badisch E., Tomastik C., Advanced chromium carbide-based hardfacings, Surface and Coatings Technology, 206 (2012) 4270-4278.Search in Google Scholar

26. Boulos M.I., Fauchais P., Pfender E., Plasma torches for cutting, welding and PTA coatings, in: Handbook of Thermal Plasmas, Springer Nature Switzerland (2015).Search in Google Scholar

27. Skowrońska B., Sokołowski W., Rostamian R., Structural investigation of the Plasma Transferred Arc hardfaced glass mold after operation, Welding Technology Review, 92(3) (2020) 55-65.10.26628/wtr.v92i3.1109Search in Google Scholar

28. Bober M., Senkara J., Comparative tests of plasma-surfaced nickel layers with chromium and titanium carbides, Welding International, 30(2) (2016) 107-111.10.1080/09507116.2014.937616Search in Google Scholar

29. Jitai N., Wei G., Mianhuan G., Shixiong L., Plasma application in thermal processing of materials, Vacuum, 65 (2002) 263-266.Search in Google Scholar

30. Mendez P.F., Barnes N., Bell K., Borle S.D., Gajapathi S.S., Guest S.D., Izadi H., Gol A.K., Wood G., Welding processes for wear resistant overlays, Journal of Manufacturing Processes, 16 (2014) 4-25.Search in Google Scholar

31. Deuis R.L., Yellup J.M., Subramanian C., Metal-matrix composite coatings by PTA surfacing, Composites Science and Technology, 58 (1998) 299-309.Search in Google Scholar

32. Gurumoorthy K., Kamaraj M., Prasad Rao K., Sambasiva Rao A., Venugopal S., Microstructural aspects of plasma transferred arc surfaced Ni-based hardfacing alloy, Materials Science and Engineering A, 456 (2007) 11-19.Search in Google Scholar

33. Hou Q.Y., Microstructure and wear resistance of steel matrix composite coating reinforced by multiple ceramic particulates using SHS reaction of Al–TiO2–B2O3 system during plasma transferred arc overlay welding, Surface and Coatings Technology, 226 (2013) 113-122.Search in Google Scholar

34. Chattopadhyay R., Advanced thermally assisted surface engineering processes, Kluwer Academic Publishers (2004).Search in Google Scholar

35. Lakshminarayanan A.K., Balasubramanian V., Varahamoorthy R., Babu S., Predicting the dilution of plasma transferred arc hardfacing of stellite on carbon steel using response surface methodology, Metals and Materials International, 14 (2008) 779-789.Search in Google Scholar

36. Branagan D.J., Marshall M.C., Meacham B.E., High toughness high hardness iron based PTAW weld materials, Materials Science and Engineering A, 428 (2006) 116-123.10.1016/j.msea.2006.04.089Search in Google Scholar

37. Just C., Badisch E., Wosik J., Influence of welding current on carbide/matrix interface properties in MMCs, Journal of Materials Processing Technology, 210 (2010) 408-414.10.1016/j.jmatprotec.2009.10.001Search in Google Scholar

38. Huang Z., Hou Q., Wang P., Microstructure and properties of Cr3C2-modified nickel based alloy coating deposited by plasma transferred arc process. Surface and Coatings Technology 202 (2008) 2993-2999.10.1016/j.surfcoat.2007.10.033Search in Google Scholar

39. Flores J.F., Neville A., Kapur N., Gnanavelu A., An experimental study of the erosion corrosion behavior of plasma transferred arc MMCs, Wear 267 (2009) 213-222.10.1016/j.wear.2008.11.015Search in Google Scholar

40. Kesavan D., Kamaraj M., The microstructure and high temperature wear performance of a nickel base hardfaced coating, Surface and Coatings Technology, 204 (2010) 4034-4043.10.1016/j.surfcoat.2010.05.022Search in Google Scholar

41. Skarvelis P., Papadimitriou G.D., Plasma transferred arc composite coatings with self lubricating properties, based on Fe and Ti sulfides: microstructure and tribological behaviour, Surface and Coatings Technology, 203 (2009) 1385-1394.10.1016/j.surfcoat.2008.11.010Search in Google Scholar

42. Klimpel A., Dobrzański L., Lisiecki A., Janicki D., The study of the technology of laser and plasma surfacing of engine valves face made of X40CrSiMo10-2 steel using cobalt-based powders, Journal of Materials Processing Technology, 175 (2006) 251-256.10.1016/j.jmatprotec.2005.04.050Search in Google Scholar

43. Smoleńska H., Kończewicz W., Łabanowski J., Marine engine valves plasma hard-facing regeneration, Welding Technology Review, 83 (2011) 73-78.10.26628/ps.v83i9.506Search in Google Scholar

44. Szala M., Hejwowski T., Lenart I., Cavitation erosion resistance on Ni-Co based coatings, Advances in Science and Technology Research Journal, 8 (2014) 36-42.Search in Google Scholar

45. Górka J., Czupryński A., Kik T. Melcer M., Industrial applications of powder plasma transferred arc welding, Welding Technology Review, 83 (2011) 87-94.10.26628/ps.v83i9.514Search in Google Scholar

46. Kik T., Moravec, J., Nováková, I., New method of processing heat treatment experiments with numerical simulation support, IOP Conference Series: Materials Science and Engineering, 227 (2017) 012069.10.1088/1757-899X/227/1/012069Search in Google Scholar

47. Sajek, A., Application of FEM simulation method in area of the dynamics of cooling AHSS steel with a complex hybrid welding process, Welding in the World, 63 (2019) 1065-1073.10.1007/s40194-019-00718-zSearch in Google Scholar

48. Kik T., Moravec, J., Nováková, I., Numerical simulations of X22CrMoV12-1 steel multilayer welding, Archives of Metallurgy and Materials, 64 (2019) 1441-1448.Search in Google Scholar

49. Kik T., Computational techniques in numerical simulations of arc and laser welding processes, Materials, 13(3) (2020) 608.10.3390/ma13030608704091432013167Search in Google Scholar

50. Mician, M., Harmaniak, D., Novy, F., Winczek, J., Moravec, J., Trsko, L., Effect of the t8/5 cooling time on the properties of S960MC steel in the HAZ of welded joints evaluated by thermal physical simulation, Metals, 10(2) (2020) 229.10.3390/met10020229Search in Google Scholar

51. Kik T., Moravec, J., Nováková, I., Application of numerical simulations on 10GN2MFA steel multilayer welding, in: Dynamical systems in applications, Awrejcewicz J. (ed.), Springer Proceedings in Mathematics and Statistics, 249 (2018).10.1007/978-3-319-96601-4_18Search in Google Scholar

52. Bini R., Monno M, Boulus M.I., Numerical and experimental study of transferred arcs in argon, Journal of Physics D: Applied Physics, 39 (2006) 3253-3266.10.1088/0022-3727/39/15/007Search in Google Scholar

53. Wang H., Chen X., Numerical modelling if the high-intensity transferred arc with a water-cooled constrictor tube, Plasma Science and Technology, 7 (2005) 3051-3056.10.1088/1009-0630/7/5/018Search in Google Scholar

54. Largo F., Gonzalez J.J., Freton P., Gleizes A., A numerical modelling of an electric arc and its interaction with the anode: Part I. The two-dimensional model, Journal of Physics D: Applied Physics, 37 (2004) 883-897.10.1088/0022-3727/37/6/013Search in Google Scholar

55. Bini R., Monno, Boulus M.I., Effect of cathode nozzle geometry and process parameters on the energy distribution for an argon transferred arc, Plasma Chemistry and Plasma Processing, 27 (2007) 359-380.10.1007/s11090-007-9083-1Search in Google Scholar

56. Wilden J., Bergmann J.P., Frank H., Plasma transferred arc welding – modelling and experimental optimization, Journal of Thermal Spray Technology, 15 (2006) 779-784.10.1361/105996306X146767Search in Google Scholar

57. Kumari P., Singh R.P., Development of mathematical models for prediction of weld bead geometry of hardfacing steel, International Journal of Applied Engineering Research, 10 (2015) 38509-38525.Search in Google Scholar

58. Sawant M.S., Jain N.K., Nikam S.H., Theoretical modeling and finite element simulation of dilution in micro-plasma transferred arc additive manufacturing of metallic materials, International Journal of Mechanical Sciences, 164 (2019) 105166.Search in Google Scholar

59. Fekih Ahmed W., Bonnefoy H., Levesque A., Crequy S., Lodini A., Thermal fatigue study of hardfaced hot forging tool using numerical analysis and residual stress evaluation, Materials Science Forum, 681 (2011) 449-454.Search in Google Scholar

60. Punitharani K., Murugan N., Sivagami S.M., Finite element analysis of residual stresses and distortion in hard faced gate valve, Journal of Scientific and Industrial Research, 69 (2010) 129-134.Search in Google Scholar

61. Nikam S.G., Jain N.K., Three-dimensional thermal analysis of multi-layer metallic deposition by micro-plasma transferred arc process using finite element simulation, Journal of Materials Processing Technology, 249 (2017) 264-273.Search in Google Scholar

62. DuMola R.J., Heath G.R., New developments in the plasma transferred arc process, in: Berndt C.C. (ed.), Proceedings of the UTSC, Indianapolis, IN, ASM International, Materials Park, OH (1997) 427–434.Search in Google Scholar

63. Bouaifi B., Bartzsch J., Gebert A., Heinze H., Investigations into plasma arc surfacing of wear-resistant hard-material layers using vanadium carbides, Welding and Cutting, 49 (1997) 54-56.Search in Google Scholar

64. Dilthey U., Kabatnik L., Central powder feed in the plasma arc powder surfacing process, Welding and Cutting, 12 (1998) E230-771.Search in Google Scholar

65. Bach F.W., Zühlsdorf J., Plasma powder welding under raised pressure environment, in: Lugscheider E. and Kammer P. (eds.), Proceedings of the UTSC, DVS, Düsseldorf (1999) 757-760.Search in Google Scholar

66. Bouaifi B., Ait-Mekideche A., Gebert A., Wocilka D., Utilisation of high-temperature plasmas containing nitrogen for reactive coating by means of plasma-arc weld surfacing, Welding and Cutting, 53 (2001) E170-E173.Search in Google Scholar

67. Wang W., Qian S.Q., Zhou X.Y., Microstructure and properties of TiN/Ni composite coating prepared by plasma transferred arc scanning process, Transactions of Nonferrous Metals Society of China, 19 (2009) 1180-1184.Search in Google Scholar

68. Shubert G.C., Welding apparatus method for depositing wear surfacing material and a substrate having a weld bead thereon. US Patent 4,689,463 (1987).Search in Google Scholar

69. Saltzman G., Sahoo P., Applications of plasma arc weld surfacing in turbine engines, in: Berndt C.C. (ed.) Proceedings of the fourth national thermal spray conference, Pittsburgh, ASM International, Materials Park, (1991) 541-548.Search in Google Scholar

70. D’Oliveira C.M., Paredes R.S., Santos R.L., Pulsed current plasma transferred arc hardfacing, Journal of Materials Processing Technology 171 (2006) 167-174.10.1016/j.jmatprotec.2005.02.269Search in Google Scholar

71. Ebert L., Thurner S., Neyka S., Influencing the distribution of reinforcing particles in plasma transfer arc welding, Materialwissenschaft und Werkstofftechnik, 40 (2009) 878-881.Search in Google Scholar

72. Lugscheider E., Langer G., Schlimbach K., Dilthey U., Kabatnik L., Possibilites for improving wear-properties of aluminum-alloys by plasma powder welding process, in: Lugscheider E., Kammer P. (eds.), Proceedings of the united thermal spray conference, Dusseldorf, Germany. DVS, Dusseldorf, Germany (1999) 410-413.Search in Google Scholar

73. Dilthey U., Kondapalli S., Balashov B., Riedel F., Improving wear resistance of aluminium alloys by developing FTC and TiC based composite coatings using plasma powder arc welding process, Surface Engineering, 24 (2008) 75-80.Search in Google Scholar

74. Leylavergne M., Chartier T., Denoirjean A., Grimaud A., Abelard P., Fauchais P., Cast iron substrates reclamation by tape casting of NiCu treated by plasma transferred arc: optimization of the tape and its plasma treatment, Thin Solid Films, 391 (2001) 1-10.Search in Google Scholar

75. Proner A., Ducos M., Dacquet J.P., Process for coating of hardfacing a part by means of a plasma tranferred arc. US Patent US 5,624,717 (1997).Search in Google Scholar

76. Reisgen U., Balashov B., Stein L., Geffers C., Nanophase hardfacing new possibilities for functional surfaces, Materials Science Forum, 638-642 (2010) 870-875.Search in Google Scholar

77. Hinners H., Konyashin I., Ries B., Petrzhik M., Levashov E.A., Park D., Weirich T., Mayer J., Mazilkin A.A., Novel hardmetals with nano-grain reinforced binder for hard-facings, International Journal of Refractory Metals and Hard Materials, 67 (2017) 98-104.Search in Google Scholar

78. Alvarez-Vera M., Torres-Mendez J.C., Hdz-Garcia H.M., Munoz-Arroyo R., Mtz-Enriquez A.I., Acevedo-Davila J.L., Hernandez-Rodriguez M.A.I., Wear resistance of TiN or AlTiN nanostructured Ni-based hardfacing by PTA under pin on disc test, Wear, 426-427 (2019) 1584-1593.Search in Google Scholar

79. Hou Q., Huang Z., Wang J.T., Influence of nano-Al2O3 particles on the microstructure and wear resistance of nickel-based alloy coating deposited by plasma transferred arc overlay welding, Surface and Coatings Technology, 205 (2009) 2806-2812.Search in Google Scholar

80. Albertli E.A., Bueno B.M.P., D’Oliveira A.S.C.M., Additive manufacturing using plasma transferred arc, The International Journal of Advanced Manufacturing Technology, 83 (2016) 1861-1871.Search in Google Scholar

81. Hoefer K., Mayr P., Additive manufacturing of titanium parts using 3D plasma metal deposition, Materials Science Forum, 941 (2018) 2137-2141.Search in Google Scholar

82. Mercado Rojas J.G., Wolfe T., Fleck B.A., Quershi A.J., Plasma transferred arc additive manufacturing of nickel metal matrix composites, Manufacturing Letters, 18 (2018) 31-34.Search in Google Scholar

83. Perez-Soriano E.M., Ariza E., Arevalo C., Montealegre-Melendez I., Kitzmantel M., Neubauer E., Processing by additive manufacturing based on plasma transferred arc of hastelloy in air and argon atmosphere, Metals, 10 (2020) 200.Search in Google Scholar

84. Jhavar S., Jain N.K., Paul C.B., Development of micro-plasma transferred arc wire deposition process for additive layer manufacturing application, Journal of Materials Processing Technology, 214 (2014) 1102-1110.Search in Google Scholar

85. Wang H., Jiang W., Valant M., Kovacevic R., Microplasma powder deposition as a new solid freeform fabrication process, Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture, 217 (2003) 1641-1650.Search in Google Scholar

86. Hallen H., Mathesius H., Ait-Mekideche A., Hettiger F., Morkramer U., Lugscheider E., New applications for high power PTA surfacing in the steel industry, in: Berndt C.C. (ed.) Proceedings of the international thermal spray conference and exposition, Orlando, FL, ASM International, Materials Park, OH (1992) 899-902.Search in Google Scholar

87. Hou Q.Y., He Y.Z., Zhang Q.A., Gao J.S., Influence of molybdenum on the microstructure and wear resistance of nickel-based alloy coating obtained by plasma transferred arc process, Materials and Design, 28 (2007) 1982-1987.Search in Google Scholar

88. Wang X.B., Cai L.J., Yang Z.H., Xiao C., Xu L.F., Selection of covering materials for synthesising fabrication of TiB2 based coating with PTA process, Surface Engineering, 25 (2009) 470-475.Search in Google Scholar

89. Liu Y.F., Liu X.B., Xua X.Y., Yang S.Z., Microstructure and dry sliding wear behavior of Fe2TiSi/-Fe/Ti5Si3, Surface and Coatings Technology, 205 (2010) 814-819.Search in Google Scholar

90. Farag S., Konyashin I., Ries B., The influence of grain growth inhibitors on the microstructure and properties of submicron, ultrafine and nano-structured hardmetals – A review, International Journal of Refractory Metals and Hard Materials, 77 (2018) 12-30.Search in Google Scholar

91. Acevedo-Davila J.L., Munoz-Arroyo R., Hdz-Garcia H.M., Martinez-Enriquez A.I., Alvarez-Vera M., Hernandez-Garcia F.A., Cobalt-based PTA coatings, effects of addition of TiC nanoparticles, Vacuum, 143 (2017) 14-22.Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo