Otwarty dostęp

Tannic acid elicits differential gene regulation in prostate cancer apoptosis

, ,  oraz   
14 wrz 2024

Zacytuj
Pobierz okładkę

F. Bray, M. Laversanne, H. Sung, J. Ferlay, R. L. Siegel, I. Soerjomataram and A. Jemal, Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J. Clin. (2024) 1–35; https://doi.org/10.3322/caac.21834 Search in Google Scholar

A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward and D. Forman, Global cancer statistics, CA Cancer J. Clin. 61(2) (2011) 69–90; https://doi.org/10.3322/caac.20107 Search in Google Scholar

W. Lou, Y. Chen, H. Ma, G. Liang and B. Liu, Antioxidant and alpha-amylase inhibitory activities of tannic acid, J. Food Sci. Technol. 55(9) (2018) 3640–3646; https://doi.org/10.1007/s13197-018-3292-x Search in Google Scholar

S. Karakurt and O. Adali, Tannic acid inhibits proliferation, migration, invasion of prostate cancer and modulates drug metabolizing and antioxidant enzymes, Anticancer Agents Med. Chem. 16(6) (2016) 781–789; https://doi.org/10.2174/1871520616666151111115809 Search in Google Scholar

S. Karakurt, S. Kandir and C. Gokcek-Sarac, Upregulation of p53 by tannic acid treatment suppresses the proliferation of human colorectal carcinoma, Acta Pharm. 71(4) (2021) 587–602; https://doi.org/10.2478/acph-2021-0036 Search in Google Scholar

N. Sp, D. Y. Kang, D. H. Kim, J.-S. Yoo, E. S. Jo, A. Rugamba, K.-J- Jang and Y. M. Yang, Tannic acid inhibits non-small cell lung cancer (NSCLC) stemness by inducing G(0)/G(1) cell cycle arrest and intrinsic apoptosis, Anticancer Res. 40(6) (2020) 3209–3220; https://doi.org/10.21873/anticanres.14302 Search in Google Scholar

B. W. Booth, B. D. Inskeep, H. Shah, J. P. Park, E. J. Hay and K. J. Burg, Tannic acid preferentially targets estrogen receptor-positive breast cancer, Int. J. Breast Cancer 2013 (2013) Article ID 369609 (9 pages); https://doi.org/10.1155/2013/369609 Search in Google Scholar

P. Darvin, Y. H. Joung, D. Y. Kang, N. Sp, H. J. Byun, T. S. Hwang, H. Sasidharakurup, C. H. Lee, K. H. Cho, K. D. Park, H. K. Lee and Y. M. Yang, Tannic acid inhibits EGFR/STAT1/3 and enhances p38/STAT1 signalling axis in breast cancer cells, J. Cell Mol. Med. 21(4) (2017) 720–734; https://doi.org/10.1111/jcmm.13015 Search in Google Scholar

S. Nam, D. M. Smith and Q. P. Dou, Tannic acid potently inhibits tumor cell proteasome activity, increases p27 and Bax expression, and induces G1 arrest and apoptosis, Cancer Epidemiol. Biomarkers Prev. 10(10) (2001) 1083–1088. Search in Google Scholar

D. Pattarayan, A. Sivanantham, V. Krishnaswami, L. Loganathan, R. Palanichamy, S. Natesan, K. Muthusamy and S. Rajasekaran, Tannic acid attenuates TGF-β1-induced epithelial-to-mesenchymal transition by effectively intervening TGF-β signaling in lung epithelial cells, J. Cell Physiol. 233(3) (2018) 2513–2525; https://doi.org/10.1002/jcp.26127 Search in Google Scholar

L. G. Jordan and B. W. Booth, HER2+ breast cancer cells undergo apoptosis upon exposure to tannic acid released from remodeled cross-linked collagen type I, J. Biomed. Mater. Res. A. 106(1) (2018) 26–32; https://doi.org/10.1002/jbm.a.36205 Search in Google Scholar

N. Geng, X. Zheng, M. Wu, L. Yang, X. Li and J. Chen, Tannic acid synergistically enhances the anticancer efficacy of cisplatin on liver cancer cells through mitochondria-mediated apoptosis, Oncol. Rep. 42(5) (2019) 2108–2116; https://doi.org/10.3892/or.2019.7281 Search in Google Scholar

J. Gupta, W. K. Abdulsahib, A. Turki Jalil, D. S. Kareem, Z. Aminov, F. Alsaikhan, A. A. Ramírez--Coronel, P. Ramaiah and B. Farhood, Prostate cancer and microRNAs: New insights into apoptosis, Pathol. Res. Pract. 245 (2023) Article ID 154436; https://doi.org/10.1016/j.prp.2023.154436 Search in Google Scholar

Y. Sun, W. Guo, Y. Guo, Z. Lin, D. Wang, Q. Guo and Y. Zhou, Apoptosis induction in human prostate cancer cells related to the fatty acid metabolism by wogonin-mediated regulation of the AKT-SREBP1-FASN signaling network, Food Chem. Toxicol. 169 (2022) Article ID 113450; https://doi.org/10.1016/j.fct.2022.113450 Search in Google Scholar

Z. Amirghofran, A. Monabati and N. Gholijani, Apoptosis in prostate cancer: bax correlation with stage, Int. J. Urol. 12(4) (2005) 340–345; https://doi.org/10.1111/j.1442-2042.2005.01051.x Search in Google Scholar

A. Frenzel, F. Grespi, W. Chmelewskij and A. Villunger, Bcl2 family proteins in carcinogenesis and the treatment of cancer, Apoptosis 14(4) (2009) 584–596; https://doi.org/10.1007/s10495-008-0300-z Search in Google Scholar

S. Khan, J. Simpson, J. C. Lynch, D. Turay, S. Mirshahidi, A. Gonda, T. W. Sanchez, C. A. Casiano and N. R. Wall, Racial differences in the expression of inhibitors of apoptosis (IAP) proteins in extracellular vesicles (EV) from prostate cancer patients, PLoS One 12(10) (2017) Article ID e0183122 (13 pages); https://doi.org/10.1371/journal.pone.0183122 Search in Google Scholar

D. C. Rio, M. Jr. Ares, G. J. Hannon and T. W. Nilsen, Purification of RNA using TRIzol (TRI reagent), Cold Spring Harb. Protoc. 2010(6) (2010); https://doi.org/10.1101/pdb.prot5439 Search in Google Scholar

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods 25(4) (2001) 402–408; https://doi.org/10.1006/meth.2001.1262 Search in Google Scholar

G. Cantarella, G. Di Benedetto, M. Scollo, I. Paterniti, S. Cuzzocrea, P. Bosco, G. Nocentini, C. Riccardi and R. Bernardini, Neutralization of tumor necrosis factor-related apoptosis-inducing ligand reduces spinal cord injury damage in mice, Neuropsychopharmacology 35(6) (2010) 1302–1314; https://doi.org/10.1038/npp.2009.234 Search in Google Scholar

S. Tai, Y. Sun, J. M. Squires, H. Zhang, W. K. Oh, C.-Z. Liang and J. Huang, PC3 is a cell line characteristic of prostatic small cell carcinoma, Prostate 71(15) (2011) 1668–1679; https://doi.org/10.1002/pros.21383 Search in Google Scholar

X. Wen, Z. Q. Lin, B. Liu and Y. Q. Wei, Caspase-mediated programmed cell death pathways as potential therapeutic targets in cancer, Cell Prolif. 45(3) (2012) 217–224; https://doi.org/10.1111/j.1365-2184.2012.00814.x Search in Google Scholar

A. Mohr, L. Deedigan, S. Jencz, Y. Mehrabadi, L. Houlden, S.-M. Albarenque and R. M. Zwacka, Caspase-10: a molecular switch from cell-autonomous apoptosis to communal cell death in response to chemotherapeutic drug treatment, Cell Death Differ. 25(2) (2018) 340–352; https://doi.org/10.1038/cdd.2017.164 Search in Google Scholar

S. Horn, M. A. Hughes, R. Schilling, C. Sticht, T. Tenev, M. Ploesser, P. Meier, M. R. Sprick, M. MacFarlane and M. Leverkus, Caspase-10 negatively regulates caspase-8-mediated cell death, switching the response to CD95L in Favor of NF-kappaB activation and cell survival, Cell Rep. 19(4) (2017) 785–797; https://doi.org/10.1016/j.celrep.2017.04.010 Search in Google Scholar

H. Yu, L. Lin, Z. Zhang, H. Zhang and H. Hu, Targeting NF-kappaB pathway for the therapy of diseases: mechanism and clinical study, Signal Transduct. Target Ther. 5(1) (2020) Article ID 209 (23 pages); https://doi.org/10.1038/s41392-020-00312-6 Search in Google Scholar

P. K. B. Nagesh, P. Chowdhury, E. Hatami, S. Kumari, V. Kumar Kashyap, M. K. Tripathi, S. Wagh, B. Meibohm, S. C. Chauhan, M. Jaggi and M. M. Yallapu, Cross-linked polyphenol-based drug nano-self-assemblies engineered to blockade prostate cancer senescence, ACS Appl. Mater. Interfaces 11(42) (2019) 38537–38554; https://doi.org/10.1021/acsami.9b14738 Search in Google Scholar

S. M. Srinivasula, M. Ahmad, T. Fernandes-Alnemri and E. S. Alnemri, Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization, Mol. Cell 1(7) (1998) 949–957; https://doi.org/10.1016/S1097-2765(00)80095-7 Search in Google Scholar

E. Bossy-Wetzel, D. D. Newmeyer and D. R. Green, Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization, EMBO J. 17(1) (1998) 37–49; https://doi.org/10.1093/emboj/17.1.37 Search in Google Scholar

Z. T. Schug, F. Gonzalvez, R. H. Houtkooper, F. M. Vaz and E. Gottlieb, BID is cleaved by caspase-8 within a native complex on the mitochondrial membrane, Cell Death Differ. 18(3) (2011) 538–548; https://doi.org/10.1038/cdd.2010.135 Search in Google Scholar

R. V. Rao, E. Hermel, S. Castro-Obregon, G. del Rio, L. M. Ellerby, H. M. Ellerby and D. E. Bredesen, Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation, J. Biol. Chem. 276(36) (2001) 33869–33874; https://doi.org/10.1074/jbc.M102225200 Search in Google Scholar

N. Morishima, K. Nakanishi, H. Takenouchi, T. Shibata and Y. Yasuhiko, An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12, J. Biol. Chem. 277(37) (2002) 34287–34294; https://doi.org/10.1074/jbc.M204973200 Search in Google Scholar

M. Los, M. Mozoluk, D. Ferrari, A. Stepczynska, C. Stroh, A. Renz, Z. Herceg, Z. Q. Wang and K. Schulze-Osthoff, Activation and caspase-mediated inhibition of PARP: a molecular switch between fibroblast necrosis and apoptosis in death receptor signaling, Mol. Biol. Cell 13(3) (2002) 978–988; https://doi.org/10.1091/mbc.01-05-0272 Search in Google Scholar

Z. Herceg and Z. Q. Wang, Failure of poly(ADP-ribose) polymerase cleavage by caspases leads to induction of necrosis and enhanced apoptosis, Mol. Cell Biol. 19(7) (1999) 5124–5133; https://doi.org/10.1128/MCB.19.7.5124 Search in Google Scholar

Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Farmacja, Farmakologia, inne