This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
F. Bray, M. Laversanne, H. Sung, J. Ferlay, R. L. Siegel, I. Soerjomataram and A. Jemal, Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J. Clin. (2024) 1–35; https://doi.org/10.3322/caac.21834Search in Google Scholar
A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward and D. Forman, Global cancer statistics, CA Cancer J. Clin. 61(2) (2011) 69–90; https://doi.org/10.3322/caac.20107Search in Google Scholar
W. Lou, Y. Chen, H. Ma, G. Liang and B. Liu, Antioxidant and alpha-amylase inhibitory activities of tannic acid, J. Food Sci. Technol. 55(9) (2018) 3640–3646; https://doi.org/10.1007/s13197-018-3292-xSearch in Google Scholar
S. Karakurt and O. Adali, Tannic acid inhibits proliferation, migration, invasion of prostate cancer and modulates drug metabolizing and antioxidant enzymes, Anticancer Agents Med. Chem.16(6) (2016) 781–789; https://doi.org/10.2174/1871520616666151111115809Search in Google Scholar
S. Karakurt, S. Kandir and C. Gokcek-Sarac, Upregulation of p53 by tannic acid treatment suppresses the proliferation of human colorectal carcinoma, Acta Pharm. 71(4) (2021) 587–602; https://doi.org/10.2478/acph-2021-0036Search in Google Scholar
N. Sp, D. Y. Kang, D. H. Kim, J.-S. Yoo, E. S. Jo, A. Rugamba, K.-J- Jang and Y. M. Yang, Tannic acid inhibits non-small cell lung cancer (NSCLC) stemness by inducing G(0)/G(1) cell cycle arrest and intrinsic apoptosis, Anticancer Res. 40(6) (2020) 3209–3220; https://doi.org/10.21873/anticanres.14302Search in Google Scholar
B. W. Booth, B. D. Inskeep, H. Shah, J. P. Park, E. J. Hay and K. J. Burg, Tannic acid preferentially targets estrogen receptor-positive breast cancer, Int. J. Breast Cancer2013 (2013) Article ID 369609 (9 pages); https://doi.org/10.1155/2013/369609Search in Google Scholar
P. Darvin, Y. H. Joung, D. Y. Kang, N. Sp, H. J. Byun, T. S. Hwang, H. Sasidharakurup, C. H. Lee, K. H. Cho, K. D. Park, H. K. Lee and Y. M. Yang, Tannic acid inhibits EGFR/STAT1/3 and enhances p38/STAT1 signalling axis in breast cancer cells, J. Cell Mol. Med. 21(4) (2017) 720–734; https://doi.org/10.1111/jcmm.13015Search in Google Scholar
S. Nam, D. M. Smith and Q. P. Dou, Tannic acid potently inhibits tumor cell proteasome activity, increases p27 and Bax expression, and induces G1 arrest and apoptosis, Cancer Epidemiol. Biomarkers Prev. 10(10) (2001) 1083–1088.Search in Google Scholar
D. Pattarayan, A. Sivanantham, V. Krishnaswami, L. Loganathan, R. Palanichamy, S. Natesan, K. Muthusamy and S. Rajasekaran, Tannic acid attenuates TGF-β1-induced epithelial-to-mesenchymal transition by effectively intervening TGF-β signaling in lung epithelial cells, J. Cell Physiol.233(3) (2018) 2513–2525; https://doi.org/10.1002/jcp.26127Search in Google Scholar
L. G. Jordan and B. W. Booth, HER2+ breast cancer cells undergo apoptosis upon exposure to tannic acid released from remodeled cross-linked collagen type I, J. Biomed. Mater. Res. A. 106(1) (2018) 26–32; https://doi.org/10.1002/jbm.a.36205Search in Google Scholar
N. Geng, X. Zheng, M. Wu, L. Yang, X. Li and J. Chen, Tannic acid synergistically enhances the anticancer efficacy of cisplatin on liver cancer cells through mitochondria-mediated apoptosis, Oncol. Rep.42(5) (2019) 2108–2116; https://doi.org/10.3892/or.2019.7281Search in Google Scholar
J. Gupta, W. K. Abdulsahib, A. Turki Jalil, D. S. Kareem, Z. Aminov, F. Alsaikhan, A. A. Ramírez--Coronel, P. Ramaiah and B. Farhood, Prostate cancer and microRNAs: New insights into apoptosis, Pathol. Res. Pract. 245 (2023) Article ID 154436; https://doi.org/10.1016/j.prp.2023.154436Search in Google Scholar
Y. Sun, W. Guo, Y. Guo, Z. Lin, D. Wang, Q. Guo and Y. Zhou, Apoptosis induction in human prostate cancer cells related to the fatty acid metabolism by wogonin-mediated regulation of the AKT-SREBP1-FASN signaling network, Food Chem. Toxicol. 169 (2022) Article ID 113450; https://doi.org/10.1016/j.fct.2022.113450Search in Google Scholar
Z. Amirghofran, A. Monabati and N. Gholijani, Apoptosis in prostate cancer: bax correlation with stage, Int. J. Urol. 12(4) (2005) 340–345; https://doi.org/10.1111/j.1442-2042.2005.01051.xSearch in Google Scholar
A. Frenzel, F. Grespi, W. Chmelewskij and A. Villunger, Bcl2 family proteins in carcinogenesis and the treatment of cancer, Apoptosis14(4) (2009) 584–596; https://doi.org/10.1007/s10495-008-0300-zSearch in Google Scholar
S. Khan, J. Simpson, J. C. Lynch, D. Turay, S. Mirshahidi, A. Gonda, T. W. Sanchez, C. A. Casiano and N. R. Wall, Racial differences in the expression of inhibitors of apoptosis (IAP) proteins in extracellular vesicles (EV) from prostate cancer patients, PLoS One12(10) (2017) Article ID e0183122 (13 pages); https://doi.org/10.1371/journal.pone.0183122Search in Google Scholar
D. C. Rio, M. Jr. Ares, G. J. Hannon and T. W. Nilsen, Purification of RNA using TRIzol (TRI reagent), Cold Spring Harb. Protoc. 2010(6) (2010); https://doi.org/10.1101/pdb.prot5439Search in Google Scholar
K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods25(4) (2001) 402–408; https://doi.org/10.1006/meth.2001.1262Search in Google Scholar
G. Cantarella, G. Di Benedetto, M. Scollo, I. Paterniti, S. Cuzzocrea, P. Bosco, G. Nocentini, C. Riccardi and R. Bernardini, Neutralization of tumor necrosis factor-related apoptosis-inducing ligand reduces spinal cord injury damage in mice, Neuropsychopharmacology35(6) (2010) 1302–1314; https://doi.org/10.1038/npp.2009.234Search in Google Scholar
S. Tai, Y. Sun, J. M. Squires, H. Zhang, W. K. Oh, C.-Z. Liang and J. Huang, PC3 is a cell line characteristic of prostatic small cell carcinoma, Prostate71(15) (2011) 1668–1679; https://doi.org/10.1002/pros.21383Search in Google Scholar
X. Wen, Z. Q. Lin, B. Liu and Y. Q. Wei, Caspase-mediated programmed cell death pathways as potential therapeutic targets in cancer, Cell Prolif. 45(3) (2012) 217–224; https://doi.org/10.1111/j.1365-2184.2012.00814.xSearch in Google Scholar
A. Mohr, L. Deedigan, S. Jencz, Y. Mehrabadi, L. Houlden, S.-M. Albarenque and R. M. Zwacka, Caspase-10: a molecular switch from cell-autonomous apoptosis to communal cell death in response to chemotherapeutic drug treatment, Cell Death Differ. 25(2) (2018) 340–352; https://doi.org/10.1038/cdd.2017.164Search in Google Scholar
S. Horn, M. A. Hughes, R. Schilling, C. Sticht, T. Tenev, M. Ploesser, P. Meier, M. R. Sprick, M. MacFarlane and M. Leverkus, Caspase-10 negatively regulates caspase-8-mediated cell death, switching the response to CD95L in Favor of NF-kappaB activation and cell survival, Cell Rep. 19(4) (2017) 785–797; https://doi.org/10.1016/j.celrep.2017.04.010Search in Google Scholar
H. Yu, L. Lin, Z. Zhang, H. Zhang and H. Hu, Targeting NF-kappaB pathway for the therapy of diseases: mechanism and clinical study, Signal Transduct. Target Ther. 5(1) (2020) Article ID 209 (23 pages); https://doi.org/10.1038/s41392-020-00312-6Search in Google Scholar
P. K. B. Nagesh, P. Chowdhury, E. Hatami, S. Kumari, V. Kumar Kashyap, M. K. Tripathi, S. Wagh, B. Meibohm, S. C. Chauhan, M. Jaggi and M. M. Yallapu, Cross-linked polyphenol-based drug nano-self-assemblies engineered to blockade prostate cancer senescence, ACS Appl. Mater. Interfaces11(42) (2019) 38537–38554; https://doi.org/10.1021/acsami.9b14738Search in Google Scholar
S. M. Srinivasula, M. Ahmad, T. Fernandes-Alnemri and E. S. Alnemri, Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization, Mol. Cell1(7) (1998) 949–957; https://doi.org/10.1016/S1097-2765(00)80095-7Search in Google Scholar
E. Bossy-Wetzel, D. D. Newmeyer and D. R. Green, Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization, EMBO J. 17(1) (1998) 37–49; https://doi.org/10.1093/emboj/17.1.37Search in Google Scholar
Z. T. Schug, F. Gonzalvez, R. H. Houtkooper, F. M. Vaz and E. Gottlieb, BID is cleaved by caspase-8 within a native complex on the mitochondrial membrane, Cell Death Differ. 18(3) (2011) 538–548; https://doi.org/10.1038/cdd.2010.135Search in Google Scholar
R. V. Rao, E. Hermel, S. Castro-Obregon, G. del Rio, L. M. Ellerby, H. M. Ellerby and D. E. Bredesen, Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation, J. Biol. Chem. 276(36) (2001) 33869–33874; https://doi.org/10.1074/jbc.M102225200Search in Google Scholar
N. Morishima, K. Nakanishi, H. Takenouchi, T. Shibata and Y. Yasuhiko, An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12, J. Biol. Chem. 277(37) (2002) 34287–34294; https://doi.org/10.1074/jbc.M204973200Search in Google Scholar
M. Los, M. Mozoluk, D. Ferrari, A. Stepczynska, C. Stroh, A. Renz, Z. Herceg, Z. Q. Wang and K. Schulze-Osthoff, Activation and caspase-mediated inhibition of PARP: a molecular switch between fibroblast necrosis and apoptosis in death receptor signaling, Mol. Biol. Cell13(3) (2002) 978–988; https://doi.org/10.1091/mbc.01-05-0272Search in Google Scholar
Z. Herceg and Z. Q. Wang, Failure of poly(ADP-ribose) polymerase cleavage by caspases leads to induction of necrosis and enhanced apoptosis, Mol. Cell Biol.19(7) (1999) 5124–5133; https://doi.org/10.1128/MCB.19.7.5124Search in Google Scholar