Otwarty dostęp

Relaxin inhibits 177Lu-EDTMP associated cell death in osteosarcoma cells through notch-1 pathway


Zacytuj

1. M. Kansara, M. W. Teng, M. J. Smyth and D. M. Thomas, Translational biology of osteosarcoma, Nat. Rev. Cancer. 14(11) (2014) 722–735; https://doi.org/10.1038/nrc3838 Search in Google Scholar

2. J. M. Jimenez-Andrade, W. G. Mantyh, A. P. Bloom, A. S. Ferng, C. P. Geffre and P. W. Mantyh, Bone cancer pain, Ann. N. Y. Acad. Sci. 1198 (2010) 173–181; https://doi.org/10.1111/j.1749-6632.2009.05429.x Search in Google Scholar

3. Bone sarcomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up, Ann. Oncol. 23(7) (2014) 113–123; https://doi.org/10.1093/annonc/mdu256 Search in Google Scholar

4. L. Wang and G. B. Xue, Catalpol suppresses osteosarcoma cell proliferation through blocking epithelial-mesenchymal transition (EMT) and inducing apoptosis, Biochem Biophys. Res. Commun. 495(1) (2018) 27–34; https://doi.org/10.1016/j.bbrc.2017.10.054 Search in Google Scholar

5. S. A. Desai, A. Manjappa and P. Khulbe, Drug delivery nanocarriers and recent advances ventured to improve therapeutic efficacy against osteosarcoma: an overview, J. Egypt Natl. Canc. Inst. 33(1) (2021) Article ID 4 (14 pages); https://doi.org/10.1186/s43046-021-00059-3 Search in Google Scholar

6. I. McCarthy, The physiology of bone blood flow: a review, J. Bone Joint Surg. Am. 88(3) (2006) 4–9; https://doi.org/10.2106/JBJS.F.00890 Search in Google Scholar

7. O. D. Sherwood, Relaxin’s physiological roles and other diverse actions, Endocr. Rev. 25(2) (2004) 205–234; https://doi.org/10.1210/er.2003-0013 Search in Google Scholar

8. X. Wei, Y. Yang, Y. J. Jiang, J. M. Lei, J. W. Guo and H. Xiao, Relaxin ameliorates high glucose-induced cardiomyocyte hypertrophy and apoptosis via the Notch1 pathway, Exp. Ther. Med. 15(1) (2018) 691–698; https://doi.org/10.3892/etm.2017.5448 Search in Google Scholar

9. T. Thanasupawat, A. Glogowska, S. Nivedita-Krishnan, B. Wilson, T. Klonisch and S. Hombach-Klonisch, Emerging roles for the relaxin/RXFP1 system in cancer therapy, Mol. Cell Endocrinol. 487 (2019) 85–93; https://doi.org/10.1016/j.mce.2019.02.001 Search in Google Scholar

10. D. Bani, A. Pini and S. K. Yue, Relaxin, insulin and diabetes: an intriguing connection, Curr. Diabetes Rev. 8(5) (2012) 329–335; https://doi.org/10.2174/157339912802083487 Search in Google Scholar

11. A. A. Waza, Z. Hamid, S. A. Bhat, N. U. D. Shah, M. Bhat and B. Ganai, Relaxin protects cardiomyocytes against hypoxia-induced damage in in-vitro conditions: Involvement of Nrf2/HO-1 signaling pathway, Life Sci. 213 (2018) 25–31; https://doi.org/10.1016/j.lfs.2018.08.059 Search in Google Scholar

12. A. A. Waza, S. A. Bhat and Z. Hamid, Relaxin: A magical therapy for healthy heart, Int. J. Curr. Pharm. Res. 10 (2018) 1–2; http://doi.org/10.22159/ijcpr.2018v10i1.24405 Search in Google Scholar

13. S. Bruell, A. Sethi, N. Smith, D. J. Scott, M. A. Hossain, Q. P. Wu, Z. Y. Guo, E. J. Petrie, P. R. Gooley and R. A. D. Bathgate, Distinct activation modes of the Relaxin Family Peptide Receptor 2 in response to insulin-like peptide 3 and relaxin, Sci. Rep. 7(1) (2017) Article ID 3294 (12 pages); https://doi.org/10.1038/s41598-017-03638-4 Search in Google Scholar

14. Y. Radestock, C. Hoang-Vu and S. Hombach-Klonisch, Relaxin reduces xenograft tumour growth of human MDA-MB-231 breast cancer cells, Breast Cancer Res. 10(4) (2008) Article ID R71 (15 pages); https://doi.org/10.1186/bcr2136 Search in Google Scholar

15. V. B. Nair, C. S. Samuel, F. Separovic, M. A. Hossain and J. D. Wade, Human relaxin-2: historical perspectives and role in cancer biology, Amino Acids 43(3) (2012) 1131–1140; https://doi.org/10.1007/s00726-012-1375-y Search in Google Scholar

16. A. Facciolli, A. Ferlin, L. Gianesello, A. Pepe and C. Foresta, Role of relaxin in human osteoclasto-genesis, Ann. N. Y. Acad. Sci. 1160(1) (2009) 221–225; https://doi.org/10.1111/j.1749-6632.2008.03788.x Search in Google Scholar

17. A. Ferlin, A. Pepe, A. Facciolli, L. Gianesello and C. Foresta, Relaxin stimulates osteoclast differentiation and activation, Bone 46(2) (2010) 504–513 https://doi.org/10.1016/j.bone.2009.10.007 Search in Google Scholar

18. T. G. Chan, E. O’Neill, C. Habjan and B, Cornelissen, Combination strategies to improve targeted radionuclide therapy, J.Nucl. Med. 61(11) (2020) 1544–1552; https://doi.org/10.2967/jnumed.120.248062 Search in Google Scholar

19. J. Yuan, C. Liu, X. Liu, Y. Wang, D. Kuai, G. Zhang and J. J. Zaknun, Efficacy and safety of 177Lu-EDTMP in bone metastatic pain palliation in breast cancer and hormone refractory prostate cancer: a phase II study, Clin. Nucl. Med. 38(2) (2013) 88–92; https://doi.org/10.1097/RLU.0b013e318279bf4d Search in Google Scholar

20. S. Chakraborty, T. Das, S. Banerjee, L. Balogh, P. R. Chaudhari, H. D. Sarma, A. Polyak, D. Mathe, M. Venkatesh, G. Janoki and M. R. Pillai, 177Lu-EDTMP: a viable bone pain palliative in skeletal metastasis, Cancer Biother. Radiopharm. 23(2) (2008) 202–213; https://doi.org/10.1089/cbr.2007.374 Search in Google Scholar

21. C. Kumar, A. Korde, K.V. Kumari, T. Das and G. Samuel, Cellular toxicity and apoptosis studies in osteocarcinoma cells, a comparison of 177Lu-EDTMP and Lu-EDTMP, Curr. Radiopharm. 6(3) (2013) 146–151; https://doi.org/10.2174/18744710113069990021 Search in Google Scholar

22. C. Kumar, R. Sharma, K. Vats, M. B Mallia, T. Das, H. Sarma and A. Dash, Comparison of the efficacy of 177Lu-EDTMP, 177Lu-DOTMP and 188Re-HEDP towards bone osteosarcoma: an in vitro study, J. Radioanal. Nucl. Chem. 319(1) (2019) 51–59; https://doi.org/10.1007/s10967-018-6283-5 Search in Google Scholar

23. A. A. Waza, K. Andrabi and M. Ul Hussain, Adenosine-triphosphate-sensitive K+ channel (Kir6.1): a novel phosphospecific interaction partner of connexin 43 (Cx43), Exp. Cell Res. 318(20) (2012) 2559–2566; https://doi.org/10.1016/j.yexcr.2012.08.004 Search in Google Scholar

24. S. Elmore, Apoptosis: a review of programmed cell death, Toxicol. Pathol. 35(4) (2007) 495–516; https://doi.org/10.1080/01926230701320337 Search in Google Scholar

25. K. J. Campbell and S. W. G. Tait, Targeting BCL-2 regulated apoptosis in cancer, Open Biol. 8(5) (2018) Article ID 18000 (11 pages); https://doi.org/10.1098/rsob.180002 Search in Google Scholar

26. S. Pattingre, A. Tassa, X. Qu, R. Garuti, X. H. Liang, N. Mizushima, M. Packer, M. D. Schneider and B. Levine, Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy, Cell 122(6) (2005) 927–939; https://doi.org/10.1016/j.cell.2005.07.002 Search in Google Scholar

27. G. V. Chaitanya, A. J. Steven and P. P. Babu, PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration, Cell Commun. Signal. 8 (2010) Article ID 31 (11 pages); https://doi.org/10.1186/1478-811X-8-31 Search in Google Scholar

28. E. M. Carrington, Y. Zhan, J. L. Brady, J. G. Zhang, R. M. Sutherland, N. S. Anstee, R. L. Schenk, I. B. Vikstrom, R. B. Delconte, D. Segal, N. D. Huntington, P. Bouillet, D. M. Tarlinton, D. C. Huang, A. Strasser, S. Cory, M. J. Herold and A. M. Lew, Anti-apoptotic proteins BCL-2, MCL-1 and A1 summate collectively to maintain survival of immune cell populations both in vitro and in vivo, Cell Death Differ. 24(5) (2017) 878–888; https://doi.org/10.1038/cdd.2017.30 Search in Google Scholar

29. M. Cargnello and P. P. Roux, Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases, Microbiol. Mol. Biol. Rev. 75(1) (2011) 50–83; https://doi.org/10.1128/MMBR.00031-10 Search in Google Scholar

30. S. Karunakaran, U. Saeed, M. Mishra, R. K. Valli, S. D. Joshi, D. P. Meka, P. Seth and V. Ravindranath, Selective activation of p38 mitogen-activated protein kinase in dopaminergic neurons of substantia nigra leads to nuclear translocation of p53 in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice, J. Neurosci. 28(47) (2008) 12500–12509; https://doi.org/10.1523/JNEUROSCI.4511-08.2008 Search in Google Scholar

31. Y. Wang, R. Cui, X. Zhang, Y. Qiao, X. Liu, Y. Chang, Y. Yu, F. Sun and J. Wang, SIRT1 increases YAP- and MKK3-dependent p38 phosphorylation in mouse liver and human hepatocellular carcinoma, Oncotarget 7(10) (2016) 11284–11298; https://doi.org/10.18632/oncotarget.7022 Search in Google Scholar

32. H. K. Koul, M. Pal and S. Koul, Role of p38 MAP kinase signal transduction in solid tumors, Genes Cancer 4(9–10) (2013) 342–359; https://doi.org/10.1177/1947601913507951 Search in Google Scholar

33. F. Engin, T. Bertin, O. Ma, M. M. Jiang, L. Wang, R. E. Sutton, L. A. Donehower and B. Lee, Notch signaling contributes to the pathogenesis of human osteosarcomas, Hum. Mol. Genet. 18(8) (2009) 1464–1470; https://doi.org/10.1093/hmg/ddp057 Search in Google Scholar

34. M. Tanaka, T. Setoguchi, M. Hirotsu, H. Gao, H. Sasaki, Y. Matsunoshita and S. Komiya, Inhibition of Notch pathway prevents osteosarcoma growth by cell cycle regulation, Br. J. Cancer 100(12) (2009) 1957–1965; https://doi.org/10.1038/sj.bjc.6605060 Search in Google Scholar

35. J. S. Mo, J. H. Yoon, E. J. Ann, J. S. Ahn, H. J. Baek, H. J. Lee, S. H. Kim, Y. D. Kim, M. Y. Kim and H. S. Park, Notch1 modulates oxidative stress induced cell death through suppression of apoptosis signal-regulating kinase 1, Proc. Natl. Acad. Sci. USA 110(17) (2013) 6865–6870; https://doi.org/10.1073/pnas.1209078110 Search in Google Scholar

36. G. Boccalini, C. Sassoli, L. Formigli, D. Bani and S. Nistri, Relaxin protects cardiac muscle cells from hypoxia/reoxygenation injury: Involvement of the Notch-1 pathway, FASEB J, 29(1) (2015) 239–249; https://doi.org/10.1096/fj.14-254854 Search in Google Scholar

37. Y. Y. Tan, J. D. Wade, G. W. Tregear and R. J. Summers, Quantitative autoradiographic studies of relaxin binding in rat atria, uterus and cerebral cortex: Characterization and effects of oestrogen treatment, Br. J. Pharmacol. 127(1) (1999) 91–98; https://doi.org/10.1038/sj.bjp.0702517 Search in Google Scholar

eISSN:
1846-9558
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Pharmacy, other