Otwarty dostęp

Ameliorative effect of different mesoporous bioactive glass materials in experimental tibial defects in rats


Zacytuj

More RB, Haubold AD, Bokros JC. Pyrolytic carbon for long-term medical implants. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons J, editors, Biomaterials science: an introduction to materials in medicine 3rd ed. Cambridge, USA: Elsevier Inc., Academic Press; 2013 p. 209–222. MoreRB HauboldAD BokrosJC Pyrolytic carbon for long-term medical implants In: RatnerBD HoffmanAS SchoenFJ LemonsJ editors, Biomaterials science: an introduction to materials in medicine 3rd ed. Cambridge, USA Elsevier Inc., Academic Press 2013 209 222 Search in Google Scholar

Stevens MM. Biomaterials for bone tissue engineering. Mater Today. 2008; 11:18–25. StevensMM Biomaterials for bone tissue engineering Mater Today 2008 11 18 25 Search in Google Scholar

Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng. 2012; 40:363–408. AminiAR LaurencinCT NukavarapuSP Bone tissue engineering: recent advances and challenges Crit Rev Biomed Eng 2012 40 363 408 Search in Google Scholar

Schmitz JP, Hollinger JO. The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Relat Res. 1986; 205:299–308. SchmitzJP HollingerJO The critical size defect as an experimental model for craniomandibulofacial nonunions Clin Orthop Relat Res 1986 205 299 308 Search in Google Scholar

Li Y, Chen S-K, Li L, Qin L, Wang X-L, Lai Y-X. Bone defect animal models for testing efficacy of bone substitute biomaterials. J Orthop Transl. 2015; 3:95–104. LiY ChenS-K LiL QinL WangX-L LaiY-X Bone defect animal models for testing efficacy of bone substitute biomaterials J Orthop Transl 2015 3 95 104 Search in Google Scholar

Bao CLM, Teo EY, Chong MSK, Liu Y, Choolani M, Chan JKY. Advances in bone tissue engineering. In: Andrades JA, editor. Regenerative medicine and tissue engineering. Rijeka, Croatia: InTech; 2013, p. 599–614. BaoCLM TeoEY ChongMSK LiuY ChoolaniM ChanJKY Advances in bone tissue engineering In: AndradesJA editor. Regenerative medicine and tissue engineering Rijeka, Croatia InTech 2013 599 614 Search in Google Scholar

Fernandez-Yague MA, Abbah SA, McNamara L, Zeugolis DI, Pandit A, Biggs MJ. Biomimetic approaches in bone tissue engineering: integrating biological and physicomechanical strategies. Adv Drug Deliv Rev. 2015; 84:1–29. Fernandez-YagueMA AbbahSA McNamaraL ZeugolisDI PanditA BiggsMJ Biomimetic approaches in bone tissue engineering: integrating biological and physicomechanical strategies Adv Drug Deliv Rev 2015 84 1 29 Search in Google Scholar

Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000; 21:2529–43. HutmacherDW Scaffolds in tissue engineering bone and cartilage Biomaterials 2000 21 2529 43 Search in Google Scholar

O’Brien FJ. Biomaterials and scaffolds for tissue engineering. Mater Today. 2011; 14:88–95. O’BrienFJ Biomaterials and scaffolds for tissue engineering Mater Today 2011 14 88 95 Search in Google Scholar

Jiménez-Holguín J, Sánchez-Salcedo S, Vallet-Regí M, Salinas AJ. Development and evaluation of copper-containing mesoporous bioactive glasses for bone defects therapy. Microporous Mesoporous Mater. 2020; 308:110454. doi: 10.1016/j.micromeso.2020.110454 Jiménez-HolguínJ Sánchez-SalcedoS Vallet-RegíM SalinasAJ Development and evaluation of copper-containing mesoporous bioactive glasses for bone defects therapy Microporous Mesoporous Mater 2020 308 110454 10.1016/j.micromeso.2020.110454 Open DOISearch in Google Scholar

Schumacher M, Habibovic P, van Rijt S. Mesoporous bioactive glass composition effects on degradation and bioactivity. Bioact Mater. 2021; 6:1921–31. SchumacherM HabibovicP van RijtS Mesoporous bioactive glass composition effects on degradation and bioactivity Bioact Mater 2021 6 1921 31 Search in Google Scholar

Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF. Bioactive glass in tissue engineering. Acta Biomater. 2011; 7:2355–73. RahamanMN DayDE BalBS FuQ JungSB BonewaldLF Bioactive glass in tissue engineering Acta Biomater 2011 7 2355 73 Search in Google Scholar

Hoppe A, Güldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials. 2011; 32:2757–74. HoppeA GüldalNS BoccacciniAR A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics Biomaterials 2011 32 2757 74 Search in Google Scholar

Lakhkar NJ, Lee I-H, Kim H-W, Salih V, Wall IB, Knowles JC. Bone formation controlled by biologically relevant inorganic ions: role and controlled delivery from phosphate-based glasses. Adv Drug Deliv Rev. 2013; 65:405–20. LakhkarNJ LeeI-H KimH-W SalihV WallIB KnowlesJC Bone formation controlled by biologically relevant inorganic ions: role and controlled delivery from phosphate-based glasses Adv Drug Deliv Rev 2013 65 405 20 Search in Google Scholar

Kargozar S, Montazerian M, Hamzehlou S, Kim HW, Baino F. Mesoporous bioactive glasses: promising platforms for antibacterial strategies. Acta Biomater. 2018; 81:1–19. KargozarS MontazerianM HamzehlouS KimHW BainoF Mesoporous bioactive glasses: promising platforms for antibacterial strategies Acta Biomater 2018 81 1 19 Search in Google Scholar

Fu Q, Saiz E, Tomsia AP. Bioinspired strong and highly porous glass scaffolds. Adv Funct Mater. 2011; 21:1058–63. FuQ SaizE TomsiaAP Bioinspired strong and highly porous glass scaffolds Adv Funct Mater 2011 21 1058 63 Search in Google Scholar

Gerhardt L-C, Boccaccini AR. Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials. 2010; 3:3867–910. GerhardtL-C BoccacciniAR Bioactive glass and glass-ceramic scaffolds for bone tissue engineering Materials 2010 3 3867 910 Search in Google Scholar

Anand A, Lalzawmliana V, Kumar V, Das P, Devi KB, Maji AK, et al. Preparation and in vivo biocompatibility studies of different mesoporous bioactive glasses. J Mech Behav Biomed Mater. 2019; 89:89–98. AnandA LalzawmlianaV KumarV DasP DeviKB MajiAK Preparation and in vivo biocompatibility studies of different mesoporous bioactive glasses J Mech Behav Biomed Mater 2019 89 89 98 Search in Google Scholar

Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006; 27:2907–15. KokuboT TakadamaH How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006 27 2907 15 Search in Google Scholar

Zhu Y, Zhu M, He X, Zhang J, Tao C. Substitutions of strontium in mesoporous calcium silicate and their physicochemical and biological properties. Acta Biomater. 2013; 9:6723–31. ZhuY ZhuM HeX ZhangJ TaoC Substitutions of strontium in mesoporous calcium silicate and their physicochemical and biological properties Acta Biomater 2013 9 6723 31 Search in Google Scholar

Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLoS Biol. 2020; 18:e3000410. doi: 10.1371/journal.pbio.3000410 Percie du SertN HurstV AhluwaliaA AlamS AveyMT BakerM The ARRIVE guidelines 2.0: updated guidelines for reporting animal research PLoS Biol 2020 18 e3000410 10.1371/journal.pbio.3000410 Open DOISearch in Google Scholar

Jung I, Lim H, Lee E, Lee J, Jung U, Choi S. Comparative analysis of carrier systems for delivering bone morphogenetic proteins. J Periodontal Implant Sci. 2015; 45:136–44. JungI LimH LeeE LeeJ JungU ChoiS Comparative analysis of carrier systems for delivering bone morphogenetic proteins J Periodontal Implant Sci 2015 45 136 44 Search in Google Scholar

Araujo AS, Fernandes AB, Maciel JV, Netto Jde N, Bolognese AM. New methodology for evaluating osteoclastic activity induced by orthodontic load. J Appl Oral Sci. 2015; 23:19–25. AraujoAS FernandesAB MacielJV Netto JdeN BologneseAM New methodology for evaluating osteoclastic activity induced by orthodontic load J Appl Oral Sci 2015 23 19 25 Search in Google Scholar

Erdfelder E, Faul F, Buchner A. GPOWER: a general power analysis program. Behav Res Methods Instrum Comput. 1996; 28:1–11. ErdfelderE FaulF BuchnerA GPOWER: a general power analysis program Behav Res Methods Instrum Comput 1996 28 1 11 Search in Google Scholar

Li X, Wang X, He D, Shi J. Synthesis and characterization of mesoporous CaO–MO–SiO2–P2O5 (M= Mg, Zn, Cu) bioactive glasses/composites. Acta Biomater. 2011; 7:3638–44. LiX WangX HeD ShiJ Synthesis and characterization of mesoporous CaO–MO–SiO2–P2O5 (M= Mg, Zn, Cu) bioactive glasses/composites Acta Biomater 2011 7 3638 44 Search in Google Scholar

Ma J, Wang CZ, Huang BX, Zhao XC, Chen CZ, Yu HJ. In vitro degradation and apatite formation of magnesium and zinc incorporated calcium silicate prepared by sol-gel method. Mater Technol. 2021; 36:420–9. MaJ WangCZ HuangBX ZhaoXC ChenCZ YuHJ In vitro degradation and apatite formation of magnesium and zinc incorporated calcium silicate prepared by sol-gel method Mater Technol 2021 36 420 9 Search in Google Scholar

Tas AC. X-ray diffraction data for flux-grown calcium hydroxyapatite whiskers. Powder Diffr. 2001; 16:102–6. TasAC X-ray diffraction data for flux-grown calcium hydroxyapatite whiskers Powder Diffr 2001 16 102 6 Search in Google Scholar

Salinas AJ, Shruti S, Malavasi G, Menabue L, Vallet-Regí M. Substitutions of cerium, gallium and zinc in ordered mesoporous bioactive glasses. Acta Biomater. 2011; 7:3452–8. SalinasAJ ShrutiS MalavasiG MenabueL Vallet-RegíM Substitutions of cerium, gallium and zinc in ordered mesoporous bioactive glasses Acta Biomater 2011 7 3452 8 Search in Google Scholar

Koohkan R, Hooshmand T, Tahriri M, Mohebbi-Kalhori D. Synthesis, characterization and in vitro bioactivity of mesoporous copper silicate bioactive glasses. Ceram Int. 2018; 44:2390–9. KoohkanR HooshmandT TahririM Mohebbi-KalhoriD Synthesis, characterization and in vitro bioactivity of mesoporous copper silicate bioactive glasses Ceram Int 2018 44 2390 9 Search in Google Scholar

Babu MM, Prasad, PS, Rao PV, Govindan NP, Singh RK, Kim HW, Veeraiah N. Titanium incorporated Zinc-Phosphate bioactive glasses for bone tissue repair and regeneration: impact of Ti4+ on physico-mechanical and in vitro bioactivity. Ceram Int. 2019; 45:23715–27. BabuMM PrasadPS RaoPV GovindanNP SinghRK KimHW VeeraiahN Titanium incorporated Zinc-Phosphate bioactive glasses for bone tissue repair and regeneration: impact of Ti4+ on physico-mechanical and in vitro bioactivity Ceram Int 2019 45 23715 27 Search in Google Scholar

Ramakrishna S, Mayer J, Wintermantel E, Leong KW. Biomedical applications of polymer-composite materials: a review. Compos Sci Technol. 2001; 61:1189–224. RamakrishnaS MayerJ WintermantelE LeongKW Biomedical applications of polymer-composite materials: a review Compos Sci Technol 2001 61 1189 224 Search in Google Scholar

Lalzawmliana V, Anand A, Roy M, Kundu B, Nandi SK. Mesoporous bioactive glasses for bone healing and biomolecules delivery. Mater Sci Eng C Mater Biol Appl. 2020; 106:110180. doi: 10.1016/j.msec.2019.110180 LalzawmlianaV AnandA RoyM KunduB NandiSK Mesoporous bioactive glasses for bone healing and biomolecules delivery Mater Sci Eng C Mater Biol Appl 2020 106 110180 10.1016/j.msec.2019.110180 Open DOISearch in Google Scholar

Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: an update. Injury. 2005; 36 Suppl 3:S20–7. GiannoudisPV DinopoulosH TsiridisE Bone substitutes: an update Injury 2005 36 Suppl 3 S20 7 Search in Google Scholar

Gu Y, Huang W, Rahaman MN, Day DE. Bone regeneration in rat calvarial defects implanted with fibrous scaffolds composed of a mixture of silicate and borate bioactive glasses. Acta Biomater. 2013; 9:9126–36. GuY HuangW RahamanMN DayDE Bone regeneration in rat calvarial defects implanted with fibrous scaffolds composed of a mixture of silicate and borate bioactive glasses Acta Biomater 2013 9 9126 36 Search in Google Scholar

Rath SN, Brandl A, Hiller D, Hoppe A, Gbureck U, Horch RE, et al. Bioactive copper-doped glass scaffolds can stimulate endothelial cells in co-culture in combination with mesenchymal stem cells. PLoS One. 2014; 9:e113319. doi: 10.1371/journal.pone.0113319 RathSN BrandlA HillerD HoppeA GbureckU HorchRE Bioactive copper-doped glass scaffolds can stimulate endothelial cells in co-culture in combination with mesenchymal stem cells PLoS One 2014 9 e113319 10.1371/journal.pone.0113319 Open DOISearch in Google Scholar

Hu G. Copper stimulates proliferation of human endothelial cells under culture. J Cell Biochem. 1998; 69:326–35. HuG Copper stimulates proliferation of human endothelial cells under culture J Cell Biochem 1998 69 326 35 Search in Google Scholar

Sen CK, Khanna S, Venojarvi M, Trikha P, Ellison EC, Hunt TK, Roy S. Copper-induced vascular endothelial growth factor expression and wound healing. Am J Physiol Hear Circ Physiol. 2002; 282:H1821–7. SenCK KhannaS VenojarviM TrikhaP EllisonEC HuntTK RoyS Copper-induced vascular endothelial growth factor expression and wound healing Am J Physiol Hear Circ Physiol 2002 282 H1821 7 Search in Google Scholar

Cordioli G, Mazzocco C, Schepers E, Brugnolo E, Majzoub Z. Maxillary sinus floor augmentation using bioactive glass granules and autogenous bone with simultaneous implant placement. Clinical and histological findings. Clin Oral Implants Res. 2001; 12:270–8. CordioliG MazzoccoC SchepersE BrugnoloE MajzoubZ Maxillary sinus floor augmentation using bioactive glass granules and autogenous bone with simultaneous implant placement. Clinical and histological findings Clin Oral Implants Res 2001 12 270 8 Search in Google Scholar

Matsuo K, Irie N. Osteoclast-osteoblast communication. Arch Biochem Biophys. 2008; 473:201–9. MatsuoK IrieN Osteoclast-osteoblast communication Arch Biochem Biophys 2008 473 201 9 Search in Google Scholar

Matsuoka K, Park KA, Ito M, Ikeda K, Takeshita S. Osteoclast-derived complement component 3a stimulates osteoblast differentiation. J Bone Miner Res. 2014; 29:1522–30. MatsuokaK ParkKA ItoM IkedaK TakeshitaS Osteoclast-derived complement component 3a stimulates osteoblast differentiation J Bone Miner Res 2014 29 1522 30 Search in Google Scholar

eISSN:
1875-855X
Język:
Angielski
Częstotliwość wydawania:
6 razy w roku
Dziedziny czasopisma:
Medicine, Assistive Professions, Nursing, Basic Medical Science, other, Clinical Medicine