Otwarty dostęp

Emodin Reduces the Activity of (1,3)-β-D-glucan Synthase from Candida albicans and Does Not Interact with Caspofungin


Zacytuj

Agarwal V, Lal P, Pruthi V. 2010. Effect of plant oils on Candida albicans. J Microbiol Immunol Infect. 43(5):447–451.AgarwalVLalPPruthiV2010Effect of plant oils on Candida albicansJ Microbiol Immunol Infect43(5):44745110.1016/S1684-1182(10)60069-2Search in Google Scholar

Alves DS, Perez-Fons L, Estepa A, Micol V. 2004. Membrane-related effects underlying the biological activity of the anthraquinones emodin and barbaloin. Biochem Pharmacol. 68:549–561.AlvesDSPerez-FonsLEstepaAMicolV2004Membrane-related effects underlying the biological activity of the anthraquinones emodin and barbaloinBiochem Pharmacol6854956110.1016/j.bcp.2004.04.012Search in Google Scholar

Apgar JM, Wilkening RR, Greenlee ML, Balkovec JM, Flattery AM, Abruzzo GK, Galgoci AM, Giacobbe RA, Gill CJ, Hsu MJ, et al. 2015. Novel orally active inhibitors of β-1,3-glucan synthesis derived from enfumafungin. Bioorg Med Chem Lett. 25(24):5813–5818.ApgarJMWilkeningRRGreenleeMLBalkovecJMFlatteryAMAbruzzoGKGalgociAMGiacobbeRAGillCJHsuMJ2015Novel orally active inhibitors of β-1,3-glucan synthesis derived from enfumafunginBioorg Med Chem Lett25(24):5813581810.1016/j.bmcl.2015.10.011Search in Google Scholar

Canela HMS, Cardoso B, Vitali LH, Coelho HC, Martinez R, Ferreira MEDS. 2018. Prevalence, virulence factors and antifungal susceptibility of Candida spp. isolated from bloodstream infections in a tertiary care hospital in Brazil. Mycoses. 61(1):11–21.CanelaHMSCardosoBVitaliLHCoelhoHCMartinezRFerreiraMEDS2018Prevalence, virulence factors and antifungal susceptibility of Candida spp. isolated from bloodstream infections in a tertiary care hospital in BrazilMycoses61(1):112110.1111/myc.12695Search in Google Scholar

Cao F, Peng W, Li X, Liu M, Li B, Qin R, Jiang W, Cen Y, Pan X, Yan Z, et al. 2015. Emodin is identified as the active component of ether extracts from Rhizoma Polygoni Cuspidati, for anti-MRSA activity. Can J Physiol Pharmacol. 93(6):485–493.CaoFPengWLiXLiuMLiBQinRJiangWCenYPanXYanZ2015Emodin is identified as the active component of ether extracts from Rhizoma Polygoni Cuspidati, for anti-MRSA activityCan J Physiol Pharmacol93(6):48549310.1139/cjpp-2014-0465Search in Google Scholar

Denning DW, Hope WW. 2010. Therapy for fungal diseases: opportunities and priorities. Trends Microbiol. 18(5):195–204.DenningDWHopeWW2010Therapy for fungal diseases: opportunities and prioritiesTrends Microbiol18(5):19520410.1016/j.tim.2010.02.004Search in Google Scholar

Denning DW. 2003. Echinocandin antifungal drugs. Lancet. 362(9390):1142–1151.DenningDW2003Echinocandin antifungal drugsLancet362(9390):1142115110.1016/S0140-6736(03)14472-8Search in Google Scholar

Dong X, Fu J, Yin X, Cao S, Li X, Lin L; Huyiligeqi, Ni J. 2016. Emodin: A Review of its pharmacology, toxicity and pharmacokinetics. Phytother Res. 30(8):1207–1218.DongXFuJYinXCaoSLiXLinL; HuyiligeqiNiJ2016Emodin: A Review of its pharmacology, toxicity and pharmacokineticsPhytother Res30(8):1207121810.1002/ptr.5631716807927188216Search in Google Scholar

Frost DJ, Brandt KD, Cugier D, Goldman R. 1995. A whole-cell Candida albicans assay for the detection of inhibitors towards fungal cell wall synthesis and assembly. J Antibiot. 48(4):306–310.FrostDJBrandtKDCugierDGoldmanR1995A whole-cell Candida albicans assay for the detection of inhibitors towards fungal cell wall synthesis and assemblyJ Antibiot48(4):30631010.7164/antibiotics.48.3067775267Search in Google Scholar

Hemaiswarya S, Kruthiventi AK, Doble M. 2008. Synergism between natural products and antibiotics against infectious diseases. Phytomedicine. 15(8):639–652.HemaiswaryaSKruthiventiAKDobleM2008Synergism between natural products and antibiotics against infectious diseasesPhytomedicine15(8):63965210.1016/j.phymed.2008.06.00818599280Search in Google Scholar

Janeczko M, Masłyk M, Kubiński K, Golczyk H. 2017. Emodin, a natural inhibitor of protein kinase CK2, suppresses growth, hyphal development, and biofilm formation of Candida albicans. Yeast. 34:253–265.JaneczkoMMasłykMKubińskiKGolczykH2017Emodin, a natural inhibitor of protein kinase CK2, suppresses growth, hyphal development, and biofilm formation of Candida albicansYeast3425326510.1002/yea.323028181315Search in Google Scholar

Kanafani ZA, Perfect JR. 2008. Antimicrobial resistance: resistance to antifungal agents: mechanisms and clinical impact. Clin Infect Dis. 46(1):120–128.KanafaniZAPerfectJR2008Antimicrobial resistance: resistance to antifungal agents: mechanisms and clinical impactClin Infect Dis46(1):12012810.1086/52407118171227Search in Google Scholar

Kong WJ, Wang JB, Jin C, Zhao YL, Dai CM, Xiao XH, Li ZL. 2009. Effect of emodin on Candida albicans growth investigated by microcalorimetry combined with chemometric analysis. Appl Microbiol Biotechnol. 83(6):1183–1190.KongWJWangJBJinCZhaoYLDaiCMXiaoXHLiZL2009Effect of emodin on Candida albicans growth investigated by microcalorimetry combined with chemometric analysisAppl Microbiol Biotechnol83(6):1183119010.1007/s00253-009-2054-019543891Search in Google Scholar

Lee HS, Kim Y. 2016. Antifungal activity of Salvia miltiorrhiza against Candida albicans is associated with the alteration of membrane permeability and (1,3)-β-D-Glucan synthase activity. J Microbiol Biotechnol. 26(3):610–617.LeeHSKimY2016Antifungal activity of Salvia miltiorrhiza against Candida albicans is associated with the alteration of membrane permeability and (1,3)-β-D-Glucan synthase activityJ Microbiol Biotechnol26(3):61061710.4014/jmb.1511.1100926699747Search in Google Scholar

Liu Z, Ma N, Zhong Y, Yang Zhan-qin Y. 2015. Antiviral effect of emodin from Rheum palmatus against coxaskievirus B5 and human respiratory syncytial virus in vitro. J Huazhong University Sci Technol (Medical Sciences). 35:916–922.LiuZMaNZhongYYang Zhan-qinY2015Antiviral effect of emodin from Rheum palmatus against coxaskievirus B5 and human respiratory syncytial virus in vitroJ Huazhong University Sci Technol (Medical Sciences)3591692210.1007/s11596-015-1528-9708951726670446Search in Google Scholar

Liu Z, Wei F, Chen LJ, Xiong HR, Liu YY, Luo F, Hou W, Xiao H, Yang ZQ. 2013. In vitro and in vivo studies of the inhibitory effects of emodin isolated from Polygonum cuspidatum on coxsakievirus b4. Molecules. 18(10):11842–11858.LiuZWeiFChenLJXiongHRLiuYYLuoFHouWXiaoHYangZQ2013In vitro and in vivo studies of the inhibitory effects of emodin isolated from Polygonum cuspidatum on coxsakievirus b4Molecules18(10):118421185810.3390/molecules181011842626974024071990Search in Google Scholar

Martins N, Ferreira IC, Barros L, Silva S, Henriques M. 2014. Candidiasis: predisposing factors, prevention, diagnosis and alternative treatment. Mycopathologia. 177(5–6):223–240.MartinsNFerreiraICBarrosLSilvaSHenriquesM2014Candidiasis: predisposing factors, prevention, diagnosis and alternative treatmentMycopathologia177(5–6):22324010.1007/s11046-014-9749-124789109Search in Google Scholar

Mayer FL, Wilson D, Hube B. 2013. Candida albicans pathogenicity mechanisms. Virulence. 4(2):119–128.MayerFLWilsonDHubeB2013Candida albicans pathogenicity mechanismsVirulence4(2):11912810.4161/viru.22913365461023302789Search in Google Scholar

Monisha BA, Kumar N, Tiku AB. 2016. Emodin and its role in chronic diseases. Adv Exp Med Biol. 928:47–73.MonishaBAKumarNTikuAB2016Emodin and its role in chronic diseasesAdv Exp Med Biol928477310.1007/978-3-319-41334-1_327671812Search in Google Scholar

Odds FC. 2003. Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother. 52(1):1.OddsFC2003Synergy, antagonism, and what the chequerboard puts between themJ Antimicrob Chemother52(1):110.1093/jac/dkg30112805255Search in Google Scholar

Petersen PJ, Labthavikul P, Jones CH, Bradford PA. 2006. In vitro antibacterial activities of tigecycline in combination with other antimicrobial agents determined by chequerboard and time-kill kinetic analysis. J Antimicrob Chemother. 57(3):573–576.PetersenPJLabthavikulPJonesCHBradfordPA2006In vitro antibacterial activities of tigecycline in combination with other antimicrobial agents determined by chequerboard and time-kill kinetic analysisJ Antimicrob Chemother57(3):57357610.1093/jac/dki47716431863Search in Google Scholar

Pfaller MA, Diekema DJ. 2007. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev. 20(1):133–163.PfallerMADiekemaDJ2007Epidemiology of invasive candidiasis: a persistent public health problemClin Microbiol Rev20(1):13316310.1128/CMR.00029-06179763717223626Search in Google Scholar

Pianalto KM, Alspaugh JAJ. 2016. New horizons in antifungal therapy. J Fungi (Basel). 2:2(4).PianaltoKMAlspaughJAJ2016New horizons in antifungal therapyJ Fungi (Basel)22(4)10.3390/jof2040026571593429376943Search in Google Scholar

Sardi JC, Scorzoni L, Bernardi T, Fusco-Almeida AM, Mendes Giannini MJ. 2013. Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J Med Microbiol. 62(1):10–24.SardiJCScorzoniLBernardiTFusco-AlmeidaAMMendes GianniniMJ2013Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic optionsJ Med Microbiol62(1):102410.1099/jmm.0.045054-023180477Search in Google Scholar

Severance EG, Gressitt KL, Stallings CR, Katsafanas E, Schweinfurth LA, Savage CL, Adamos MB, Sweeney KM, Origoni AE, Khushalani S, et al. 2016. Candida albicans exposures, sex specificity and cognitive deficits in schizophrenia and bipolar disorder. Schizophr. 2:16018.SeveranceEGGressittKLStallingsCRKatsafanasESchweinfurthLASavageCLAdamosMBSweeneyKMOrigoniAEKhushalaniS2016Candida albicans exposures, sex specificity and cognitive deficits in schizophrenia and bipolar disorderSchizophr21601810.1038/npjschz.2016.18489889527336058Search in Google Scholar

Shedletzky E, Unger C, Delmer DP. 1997. A microtiter-based fluorescence assay for (1,3)-beta-glucan synthases. Anal Biochem. 249(1):88–93.ShedletzkyEUngerCDelmerDP1997A microtiter-based fluorescence assay for (1,3)-beta-glucan synthasesAnal Biochem249(1):889310.1006/abio.1997.21629193713Search in Google Scholar

Sher A. 2009. Antimicrobial activity of natural products from medicinal plants. Gomal J Med Sci. 7:72–78.SherA2009Antimicrobial activity of natural products from medicinal plantsGomal J Med Sci77278Search in Google Scholar

Shrimali D, Shanmugam MK, Kumar AP, Zhang J, Tan BK, Ahn KS, Sethi G. 2013. Targeted abrogation of diverse signal transduction cascades by emodin for the treatment of inflammatory disorders and cancer. Cancer Lett. 341(2):139–149.ShrimaliDShanmugamMKKumarAPZhangJTanBKAhnKSSethiG2013Targeted abrogation of diverse signal transduction cascades by emodin for the treatment of inflammatory disorders and cancerCancer Lett341(2):13914910.1016/j.canlet.2013.08.02323962559Search in Google Scholar

Singh N, Yeh PJ. 2017. Suppressive drug combinations and their potential to combat antibiotic resistance. J Antibiot (Tokyo). 70(11):1033–1042.SinghNYehPJ2017Suppressive drug combinations and their potential to combat antibiotic resistanceJ Antibiot (Tokyo)70(11):1033104210.1038/ja.2017.102565993128874848Search in Google Scholar

Vicente MF, Basilio A, Cabello A, Peláez F. 2003. Microbial natural products as a source of antifungals. Clin Microbiol Infect. 9(1):15–32.VicenteMFBasilioACabelloAPeláezF2003Microbial natural products as a source of antifungalsClin Microbiol Infect9(1):153210.1046/j.1469-0691.2003.00489.x12691539Search in Google Scholar

CLSI. 2017. Reference method for broth dilution antifungal susceptibility testing of yeasts. CLSI standard M27. 4th ed. Wayne (USA): Clinical and Laboratory Standards Institute.CLSI2017Reference method for broth dilution antifungal susceptibility testing of yeasts. CLSI standard M274th ed.Wayne (USA)Clinical and Laboratory Standards InstituteSearch in Google Scholar

Wei WT, Lin SZ, Liu DL, Wang ZH. 2013. The distinct mechanisms of the antitumor activity of emodin in different types of cancer (Review). Oncol Rep. 30(6):2555–2562.WeiWTLinSZLiuDLWangZH2013The distinct mechanisms of the antitumor activity of emodin in different types of cancer (Review)Oncol Rep30(6):2555256210.3892/or.2013.274124065213Search in Google Scholar

Wiederhold NP. 2018. The antifungal arsenal: alternative drugs and future targets. Int J Antimicrob Agents. 51(3):333–339.WiederholdNP2018The antifungal arsenal: alternative drugs and future targetsInt J Antimicrob Agents51(3):33333910.1016/j.ijantimicag.2017.09.00228890395Search in Google Scholar

Zacchino SA, Butassi E, Cordisco E, Svetaz LA. 2017. Hybrid combinations containing natural products and antimicrobial drugs that interfere with bacterial and fungal biofilms. Phytomedicine. 37:14–26.ZacchinoSAButassiECordiscoESvetazLA2017Hybrid combinations containing natural products and antimicrobial drugs that interfere with bacterial and fungal biofilmsPhytomedicine37142610.1016/j.phymed.2017.10.02129174600Search in Google Scholar

eISSN:
2544-4646
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Microbiology and Virology