1. bookTom 10 (2017): Zeszyt 4 (January 2017)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1178-5608
Pierwsze wydanie
01 Jan 2008
Częstotliwość wydawania
1 raz w roku
Języki
Angielski
Otwarty dostęp

PERFORMANCE EVALUATION OF SVM KERNELS ON MULTISPECTRAL LISS III DATA FOR OBJECT CLASSIFICATION

Data publikacji: 01 Dec 2017
Tom & Zeszyt: Tom 10 (2017) - Zeszyt 4 (January 2017)
Zakres stron: 1 - 16
Otrzymano: 02 Oct 2017
Przyjęty: 17 Nov 2017
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1178-5608
Pierwsze wydanie
01 Jan 2008
Częstotliwość wydawania
1 raz w roku
Języki
Angielski

Mahendra H N, Shivakumar B R and Praveen J, “Pixel-based Classification of Multispectral Remotely Sensed Data Using Support Vector Machine Classifier”, National Conference on Advanced Innovation in Engineering and Technology (NCAIET-2015) Alva’s Institute of Engineering and Technology, Moodbidri Vol. 3, Special Issue 1, April 2015. Search in Google Scholar

Huang, Chengquan, John RG Townshend, Shunlin Liang, Satya NV Kalluri, and Ruth S. DeFries, “Impact of sensor’s point spread function on land cover characterization: assessment and deconvolution.” Remote Sensing of Environment, Vol. 80, no. 2,2002, pp. 203-212.10.1016/S0034-4257(01)00298-X Search in Google Scholar

Dixon, B., and Nivedita Candade, “Multispectral land use classification using neural networks and support vector machines: one or the other, or both?.”International Journal of Remote Sensing, Vol.29, no.4,2008, pp.1185-1206.10.1080/01431160701294661 Search in Google Scholar

Melgani,F, and Bruzzone,L, “Classification of hyperspectral remote sensing images with support vector machines”, IEEE Transactions on Geoscience and Remote Sensing, Vol. 42,no.8, 2004,pp. 1778-1790.10.1109/TGRS.2004.831865 Search in Google Scholar

Huang, C, Davis, L.S., and Townshend, J.R.G., “An assessment of support vector machines for land cover classification”, Int. journal of Remote Sensing, Vol. 23, no. 4, 2002, pp. 725-749.10.1080/01431160110040323 Search in Google Scholar

Aiying Zhang and Ping Tang, “Fusion algorithm of pixel based and object based classifier for remote sensing image classification”, IEEE Transactions on Geo science and Remote Sensing Symposium(IGARSS), Beijing, China, 2013, pp. 2740-2743.10.1109/IGARSS.2013.6723390 Search in Google Scholar

Devadasa, R, Denhama, R.J and Pringle,M, “Support vector machine classification of object based data for crop mapping, using multi temporal landsat imagery” , International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXIX B7, 2012.10.5194/isprsarchives-XXXIX-B7-185-2012 Search in Google Scholar

Zhu, G and Blumberg,D.G., “Classification using ASTER data and SVM algorithms; The case study of Beer Sheva, Israel”, Remote Sensing of Environment, Vol. 80, no. 2, 2002,pp. 233-240.10.1016/S0034-4257(01)00305-4 Search in Google Scholar

Su, L, Chopping, M. J., Rango, A, Martonchik, J. V., and Peters, D. P. C. , “Support vector machines for recognition of semi-arid vegetation types using MISR multiangle imagery”, Remote Sensing of Environment, Vol. 107, no. 1-2,2007, pp. 299-311.10.1016/j.rse.2006.05.023 Search in Google Scholar

Muñoz-Marí, J, Bruzzone, L and Camps-Valls, G., “A support vector domain description approach to supervised classification of remote sensing images”, IEEE Transactions on Geoscience and Remote Sensing, Vol. 45, 2007, pp.2683-2692.10.1109/TGRS.2007.897425 Search in Google Scholar

Gómez-Chova L, Camps-Valls G, Muñoz-Marí J and Calpe J., “Semi supervised image classification with laplacian support vector machines”, IEEE Transactions on Geoscience and Remote Sensing, Vol. 5, 2008,pp.336-340.10.1109/LGRS.2008.916070 Search in Google Scholar

Gianinetto M., Rusmini M., Candiani G., Dalla Via G., Frassy F., Maianti P., Marchesi A., Rota Nodari F., and Dini L., “Hierarchical classification of complex landscape with VHR pan-sharpened satellite data and OBIA techniques”, European Journal of Remote Sensing, Vol.47, 2014, pp.229-250.10.5721/EuJRS20144715 Search in Google Scholar

Mountrakis , G., Im, J. and Ogole, C., “Support Vector Machines in Remote Sensing: A Review”, ISPRS Journal of Photogrammetry and Remote Sensing, Vol.66, 2011, pp.247-259.10.1016/j.isprsjprs.2010.11.001 Search in Google Scholar

Rokni Deilmai, B, Bin Ahmad, B, and Zabihi,H, “Comparison of two classification methods (MLC and SVM) to extract land use and land cover in Johor Malaysia”,7th IGRSM International Remote Sensing & GIS Conference and Exhibition IOP Conf. Series: Earth and Environmental Science,Vol.20,2014.10.1088/1755-1315/20/1/012052 Search in Google Scholar

Abbas T, Fereydoon S, Amin M, Chamran Taghati Hossien P, and Amir Hossein Esmaile S “Land Use Classification using Support Vector Machine and Maximum Likelihood Algorithms by Landsat 5 TM Images”, Walailak J Sci & Tech vol.12 ,no 8,2015, pp, 681-687. Search in Google Scholar

Zylshal, Sulma, S., Yulianto, F. Nugroho J, and Sofan,P, “A support vector machine object based image analysis approach on urban green space extraction using Pleiades-1A imagery “, Model. Earth Syst. Environ. 2016, Vol. 54,no.2, 2016,pp.1-12. Search in Google Scholar

Yekkehkhany, B, Safari, A, Homayouni, S, and Hasanlou, M., “A Comparison Study of Different Kernel Functions for SVM-based Classification of Multi-temporal Polarimetry SAR Data”, The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, suppl. W3 XL.2, 2015, pp.281-285.10.5194/isprsarchives-XL-2-W3-281-2014 Search in Google Scholar

Okwuashi, Onuwa and Isaac Ikediashi Dubem One-Againist-all remote sensing image classification using support vector machine”, European Scientific Journal, vol 10. No27 pp,Sep 2014, 304-314. Search in Google Scholar

Izquierdo-Verdiguier, E, Gómez-Chova, L, Bruzzone,L and Camps-Valls, G,”Semisupervised Kernel Feature Extraction for Remote Sensing Image Analysis,” in IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 9, 2014, pp. 5567-5578.10.1109/TGRS.2013.2290372 Search in Google Scholar

Rupali, A, Surase,R, Karbhari, B and Kale, V, “Performance Evaluation of Support Vector Machine and Maximum Likelihood Classifier For Multiple Crop Classification”, International Journal of Remote Sensing & Geoscience (IJRSG), Vol. 4,no. 1, 2015. Search in Google Scholar

Vikas Sharma, Diganta Baruah, Dibyajyoti Chutia, Raju, PLN, and Bhattacharya, DK, “An Assessment of Support Vector Machine Kernel Parameters using Remotely Sensed Satellite Data”,IEEE International Conference On Recent Trends In Electronics Information Communication Technology, 2016.10.1109/RTEICT.2016.7808096 Search in Google Scholar

Alim Samat , Paolo Gamba, Jilili Abuduwaili, Sicong Liu and Zelang Miao, “Geodesic Flow Kernel Support Vector Machine for Hyperspectral Image Classification by Unsupervised Subspace Feature Transfer”, Remote Sens. Vol.8,no.3, 2016, pp.1- 23.10.3390/rs8030234 Search in Google Scholar

Samat, A., Li, J., Liu, S., Du, P., Miao, Z. and Luo, J., “Improved hyperspectral image classification by active learning using pre-designed mixed pixels”,. Pattern Recognit. Vol.51,2016,pp. 43–58.10.1016/j.patcog.2015.08.019 Search in Google Scholar

Aiye Shi, Hongmin Gao, Zhenyu He, Min Li and Lizhong Xu, “A Hyperspectral Band Selection based on Game Theory and Differential Evolution Algorithm”, International Journal on Smart Sensing and Intelligent Systems, Vol.9, no,4, 2016, pp.1971-1990.10.21307/ijssis-2017-948 Search in Google Scholar

Prasad , S.V.S., Satya Savithri,T, and Iyyanki V. Murali Krishna, “Comparison of Accuracy Measures for RS Image Classification using SVM and ANN Classifiers”, International Journal of Electrical and Computer Engineering (IJECE), Vol. 7, no. 3, 2017, pp. 1180-1187.10.11591/ijece.v7i3.pp1180-1187 Search in Google Scholar

Benqin Song, Peijun Li, Senior Member, Jun Li, and Antonio Plaza, “One-Class Classification of Remote Sensing Images Using Kernel Sparse Representation “IEEE Journal of Selected topics in Applied Earth Observations and Remote Sensing, Vol. 9, no. 4, 2016 pp: 1613-1623.10.1109/JSTARS.2015.2508285 Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo