Otwarty dostęp

Shaping of Axially Compressed Bipolarly Prestressed Closely Spaced Built-Up Members


Zacytuj

Chesson, E. Jr., & Munse, W. H. (1963). Riveted and Bolted Joints: Truss-Type Tensile Connections. J. Struct. Div., 89(1), 67–106. Chesson E. Jr. Munse W. H. 1963 Riveted and Bolted Joints: Truss-Type Tensile Connections J. Struct. Div. 89 1 67 106 10.1061/JSDEAG.0000891 Search in Google Scholar

McCormac, M. C., & Csernak, S. F. (2012). Structural steel design. New Jersey: Prentice Hall. McCormac M. C. Csernak S. F. 2012 Structural steel design New Jersey Prentice Hall Search in Google Scholar

Subramanian, N. (2010). Steel Structures. Design and practice. New Delhi: Oxford University Press. Subramanian N. 2010 Steel Structures. Design and practice New Delhi Oxford University Press Search in Google Scholar

Büttner, O., & Stenker, H. (1975). Light metal constructions. Warsaw: Arkady. (in Polish) Büttner O. Stenker H. 1975 Light metal constructions Warsaw Arkady in Polish Search in Google Scholar

Space structures (1985). edited by Bródka, J. Arkady: Warsaw. (in Polish) Space structures 1985 edited by Bródka J. Arkady Warsaw in Polish Search in Google Scholar

Chilton, J. (2000). Space grid structures. Oxford: Architectural Press. Chilton J. 2000 Space grid structures Oxford Architectural Press Search in Google Scholar

Porto, C. E. (2014). The innovative structural conception in Stéphane du Château’s work: from metallic trusses to the development of spatial frames. Architectus 4, 51–64. Porto C. E. 2014 The innovative structural conception in Stéphane du Château’s work: from metallic trusses to the development of spatial frames Architectus 4 51 64 Search in Google Scholar

Kowal, Z. (2011). The formation of space bar structures supported by the system reliability theory. Arch. Civ. Mech. Eng. 11(1), 115–133. Kowal Z. 2011 The formation of space bar structures supported by the system reliability theory Arch. Civ. Mech. Eng. 11 1 115 133 10.1016/S1644-9665(12)60178-2 Search in Google Scholar

Kowal, Z., Piotrowski, R., & Szychowski, A. (2012). Adaptation of halls with roof covering to solar radiation energy extraction. Zeszyty Naukowe Politechniki Rzeszowskiej, 283, 59(2/2012/II), 431–438 (in Polish). Kowal Z. Piotrowski R. Szychowski A. 2012 Adaptation of halls with roof covering to solar radiation energy extraction Zeszyty Naukowe Politechniki Rzeszowskiej 283 59 2/2012/II 431 438 in Polish Search in Google Scholar

Kowal, Z., Siedlecka, M., Piotrowski, R., Brzezińska, K., Otwinowska, K., & Szychowski, A. (2015). Shapes of energy-active segments of steel buildings. Arch. Civ. Eng., 61(3), 119–132. Kowal Z. Siedlecka M. Piotrowski R. Brzezińska K. Otwinowska K. Szychowski A. 2015 Shapes of energy-active segments of steel buildings Arch. Civ. Eng. 61 3 119 132 10.1515/ace-2015-0029 Search in Google Scholar

Kubicka, K., Radoń, U., Szaniec, W., & Pawlak, U. (2017). Comparative Analysis of the Reliability of Steel Structure with Pinned and Rigid Nodes Subjected to Fire. IOP Conf. Ser.: Mater. Sci. Eng. 245, 022051 1–9. Kubicka K. Radoń U. Szaniec W. Pawlak U. 2017 Comparative Analysis of the Reliability of Steel Structure with Pinned and Rigid Nodes Subjected to Fire IOP Conf. Ser.: Mater. Sci. Eng. 245 022051 1 9 10.1088/1757-899X/245/2/022051 Search in Google Scholar

Timoshenko, S. P. (1966). History of strength of materials. Warsaw: Arkady (in Polish). Timoshenko S. P. 1966 History of strength of materials Warsaw Arkady in Polish Search in Google Scholar

Engesser, F. (1889). Über Knickfestigkeitgerader Stäbe. Zeitschriftfür Architekten und Ingenieurwesen, 35(4), 455–462. Engesser F. 1889 Über Knickfestigkeitgerader Stäbe Zeitschriftfür Architekten und Ingenieurwesen 35 4 455 462 Search in Google Scholar

Haringx, J. A. (1949). Elastic stability of helical springs at a compression larger than original length. Appl. Sci. Res., 1(1), 417–434. Haringx J. A. 1949 Elastic stability of helical springs at a compression larger than original length Appl. Sci. Res. 1 1 417 434 10.1007/BF02120345 Search in Google Scholar

Bleich, F. (1952). Buckling strength of metal structures. New York: Mc Graw-Hill. Bleich F. 1952 Buckling strength of metal structures New York Mc Graw-Hill Search in Google Scholar

Timoshenko, S. P., & Gere, J. M. (1963). Theory of elastic stability. Warsaw: Arkady (in Polish). Timoshenko S. P. Gere J. M. 1963 Theory of elastic stability Warsaw Arkady in Polish Search in Google Scholar

Kowal, Z. (2001). About the critical load bearing capacity of battened columns. Inżynieria i Budownictwo, 10, 580–582 (in Polish). Kowal Z. 2001 About the critical load bearing capacity of battened columns Inżynieria i Budownictwo 10 580 582 in Polish Search in Google Scholar

Bažant, Z. P. (2003). Shear Buckling of Sandwich, Fiber Composite and Lattice Columns, Bearings, and Helical Springs: Paradox Resolved. J. Appl. Mech., 70, 75–83. Bažant Z. P. 2003 Shear Buckling of Sandwich, Fiber Composite and Lattice Columns, Bearings, and Helical Springs: Paradox Resolved J. Appl. Mech. 70 75 83 10.1115/1.1509486 Search in Google Scholar

Aslani, F., & Goel, S. C. (1991). An Analytical Criterion for Buckling Strength of Built-up Compression Members. Eng. J., 28(4), 159–168. Aslani F. Goel S. C. 1991 An Analytical Criterion for Buckling Strength of Built-up Compression Members Eng. J. 28 4 159 168 Search in Google Scholar

AISC LRFD: 1994. Load and resistance factor design, American Institute of Steel Construction (AISC), Chicago. AISC LRFD 1994 Load and resistance factor design American Institute of Steel Construction (AISC) Chicago Search in Google Scholar

Temple, M. C., & El-Mahdy, G. M. (1993). Buckling of built-up compression members in the plane of the connectors. Can. J. Civ. Eng., 20, 895–909. Temple M. C. El-Mahdy G. M. 1993 Buckling of built-up compression members in the plane of the connectors Can. J. Civ. Eng. 20 895 909 10.1139/l93-122 Search in Google Scholar

Temple, M. C., & El-Mahdy, G. M. (1995). Local effective length factor in the equivalent slenderness ratio. Can. J. Civ. Eng., 22, 1164–1170. Temple M. C. El-Mahdy G. M. 1995 Local effective length factor in the equivalent slenderness ratio Can. J. Civ. Eng. 22 1164 1170 10.1139/l95-134 Search in Google Scholar

Lue, D. M., Yen, T., & Liu, J. L. (2006). Experimental Investigation on Built-up Columns. J. Constr. Steel Res., 62, 1325–1332. Lue D. M. Yen T. Liu J. L. 2006 Experimental Investigation on Built-up Columns J. Constr. Steel Res. 62 1325 1332 10.1016/j.jcsr.2006.02.004 Search in Google Scholar

Liu, J. L., Lue, D. M., & Lin, Ch. H. (2009). Investigation on Slenderness Ratios of Built-up Compression Members. J. Constr. Steel Res., 65, 237–248. Liu J. L. Lue D. M. Lin Ch. H. 2009 Investigation on Slenderness Ratios of Built-up Compression Members J. Constr. Steel Res. 65 237 248 10.1016/j.jcsr.2008.02.012 Search in Google Scholar

AISC-LRFD:2005. Load and resistance factor design. Specification for structural steel buildings. American Institute of Steel Construction: Chicago. AISC-LRFD 2005 Load and resistance factor design. Specification for structural steel buildings American Institute of Steel Construction Chicago Search in Google Scholar

AS-4100:1998. Steel structures. Standards Association of Australia, Homebush, Australia, 1998. AS-4100 1998 Steel structures Standards Association of Australia Homebush, Australia 1998 Search in Google Scholar

CSA S16-01:2001. Limit states design of steel structures. Canadian Standards Association, Toronto. CSA S16-01 2001 Limit states design of steel structures Canadian Standards Association Toronto Search in Google Scholar

Abejide, O. S., & Masce, P. E. (2007). Evaluation of Effective Lengths of Braced Double Angle Diagonals. Res. J. Appl. Sci, 2(10), 1060–1065. Abejide O. S. Masce P. E. 2007 Evaluation of Effective Lengths of Braced Double Angle Diagonals Res. J. Appl. Sci 2 10 1060 1065 Search in Google Scholar

CEN: 2003. Eurocode 3: Design of Steel Structures. Part 1-1: General Rules and Rules for Buildings. European Committee for Standardization. CEN 2003 Eurocode 3: Design of Steel Structures. Part 1-1: General Rules and Rules for Buildings European Committee for Standardization Search in Google Scholar

AISC: 1999. Load and resistance factor design. Specification for structural steel buildings. American Institute of Steel Construction, Chicago. AISC 1999 Load and resistance factor design. Specification for structural steel buildings American Institute of Steel Construction Chicago Search in Google Scholar

BS5950: 2000. Structural Use of Steelwork in Buildings. British Standards Institution, London. BS5950 2000 Structural Use of Steelwork in Buildings British Standards Institution London Search in Google Scholar

Stone, T. A., & La Boube, R. A. (2005). Behavior of cold-formed steel built-up I-sections. Thin-Walled Struct., 43, 1805–1817. Stone T. A. La Boube R. A. 2005 Behavior of cold-formed steel built-up I-sections Thin-Walled Struct. 43 1805 1817 10.1016/j.tws.2005.09.001 Search in Google Scholar

Ting, T. C. H., & Lau, H. H. (2011) Compression Test on Cold-formed Steel Built-up Back-to-back Channels Stub Columns. Adv. Mater. Res., 201–203: 2900–2903. Ting T. C. H. Lau H. H. 2011 Compression Test on Cold-formed Steel Built-up Back-to-back Channels Stub Columns Adv. Mater. Res. 201–203 2900 2903 10.4028/www.scientific.net/AMR.201-203.2900 Search in Google Scholar

Anbarasu, M., Kanagarasu, K., & Sukumar, S. (2015). Investigation on the behaviour and strength of cold-formed steel web stiffened built-up battened columns. Mater. and Struct., 48, 4029–4038. Anbarasu M. Kanagarasu K. Sukumar S. 2015 Investigation on the behaviour and strength of cold-formed steel web stiffened built-up battened columns Mater. and Struct. 48 4029 4038 10.1617/s11527-014-0463-8 Search in Google Scholar

Zhang, J.-H., & Young, B. (2015). Numerical investigation and design of cold-formed steel built-up open section columns with longitudinal stiffeners. Thin-Walled Struct., 89, 178–191. Zhang J.-H. Young B. 2015 Numerical investigation and design of cold-formed steel built-up open section columns with longitudinal stiffeners Thin-Walled Struct. 89 178 191 10.1016/j.tws.2014.12.011 Search in Google Scholar

Tamai, H., Yamanishi, T., Takamatsu, T. & Matsuo, A. (2011). Experimental study on lateral buckling behavior of weld-free built-up member made of H-SA700A high-strength steel. J. Struct. Constr. Eng. 2, 407–415. Tamai H. Yamanishi T. Takamatsu T. Matsuo A. 2011 Experimental study on lateral buckling behavior of weld-free built-up member made of H-SA700A high-strength steel J. Struct. Constr. Eng. 2 407 415 10.3130/aijs.76.407 Search in Google Scholar

Słowiński, K., & Wuwer, W. (2016). Blind-bolted shear connections for axially compressed RHS columns strengthened with open sections. J. Constr. Steel Res. 127, 15–27. Słowiński K. Wuwer W. 2016 Blind-bolted shear connections for axially compressed RHS columns strengthened with open sections J. Constr. Steel Res. 127 15 27 10.1016/j.jcsr.2016.07.023 Search in Google Scholar

Słowiński, K., & Wuwer, W. (2016). Technology of reinforcing of compressed steel bars with closed and open cross-sections. Fastener: rynek elementów złącznych, 1, 43–47. Słowiński K. Wuwer W. 2016 Technology of reinforcing of compressed steel bars with closed and open cross-sections Fastener: rynek elementów złącznych 1 43 47 Search in Google Scholar

Deniziak, P., & Winkelmann, K. (2018). TS-based RSM-aided design of cold-formed steel stiffened C-sectional columns susceptible to buckling, Shell Struct.: Theory and Applications, 4, 533–536. Deniziak P. Winkelmann K. 2018 TS-based RSM-aided design of cold-formed steel stiffened C-sectional columns susceptible to buckling Shell Struct.: Theory and Applications 4 533 536 10.1201/9781315166605-123 Search in Google Scholar

Deniziak, P., & Winkelmann, K. (2018). Influence of nonlinearities on the efficiency and accuracy of FEM calculations on the example of a steel build-up thin-walled column. MATEC Web of Conferences, 219, 02010 1–8. Deniziak P. Winkelmann K. 2018 Influence of nonlinearities on the efficiency and accuracy of FEM calculations on the example of a steel build-up thin-walled column MATEC Web of Conferences 219 02010 1 8 10.1051/matecconf/201821902010 Search in Google Scholar

PN-EN 1993-1-1:2006 Eurocode 3: Design of steel structures – Part 1-1: General rules and rules for buildings. The Polish Committee for Standardization, Warsaw. PN-EN 1993-1-1 2006 Eurocode 3: Design of steel structures – Part 1-1: General rules and rules for buildings The Polish Committee for Standardization Warsaw Search in Google Scholar

Kowal, Z., & Siedlecka, M. (2017). Load bearing capacity of compressed closely spaced built-up members in space structures. JCEEA, 34, 64(3/I/17), 407–416. Kowal Z. Siedlecka M. 2017 Load bearing capacity of compressed closely spaced built-up members in space structures JCEEA 34 64 3/I/17 407 416 Search in Google Scholar

ABAQUS 6.14. PDF Documentation. Abaqus Analysis User’s Guide, Simulia, Dassault Systèmes, 2014. ABAQUS 6.14. PDF Documentation Abaqus Analysis User’s Guide, Simulia, Dassault Systèmes 2014 Search in Google Scholar

ABAQUS 6.14. PDF Documentation. Abaqus/CAE User’s Guide, Simulia, Dassault Systèmes, 2014. ABAQUS 6.14. PDF Documentation Abaqus/CAE User’s Guide, Simulia, Dassault Systèmes 2014 Search in Google Scholar

ABAQUS 6.14. PDF Documentation. Abaqus Theory Guide, Simulia, Dassault Systèmes 2014. ABAQUS 6.14. PDF Documentation Abaqus Theory Guide, Simulia, Dassault Systèmes 2014 Search in Google Scholar

eISSN:
1899-0142
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Architecture and Design, Architecture, Architects, Buildings