Zacytuj

Abe Y., Inoue H., Ashida H., Maeda Y., Kinoshita T., Kitada S.: Glycan region of GPI anchored-protein is required for cytocidal oligomerization of an anticancer parasporin-2, Cry46Aa1 protein, from Bacillus thuringiensis strain A1547. J. Invertebr. Pathol. 142, 71–81 (2017)AbeY.InoueH.AshidaH.MaedaY.KinoshitaT.KitadaS.Glycan region of GPI anchored-protein is required for cytocidal oligomerization of an anticancer parasporin-2, Cry46Aa1 protein, from Bacillus thuringiensis strain A1547J. Invertebr. Pathol.1427181201710.1016/j.jip.2016.11.008Search in Google Scholar

Abe Y., Shimada H., Kitada S.: Raft-targeting and oligomerization of parasporin-2, a Bacillus thuringiensis crystal protein with anti-tumour activity. J. Biochem. 143, 269–275 (2008)AbeY.ShimadaH.KitadaS.Raft-targeting and oligomerization of parasporin-2, a Bacillus thuringiensis crystal protein with anti-tumour activityJ. Biochem.143269275200810.1093/jb/mvm220Search in Google Scholar

Ackermann H.W., Azizbekyan R.R., Bernier R.L., de Barjac H., Saindoux S., Valéro J.R., Yu M.X.: Phage typing of Bacillus subtilis and B. thuringiensis. Res. Microbiol. 146, 643–657 (1995)AckermannH.W.AzizbekyanR.R.BernierR.L.de BarjacH.SaindouxS.ValéroJ.R.YuM.X.Phage typing of Bacillus subtilis and B. thuringiensisRes. Microbiol.146643657199510.1016/0923-2508(96)81062-XSearch in Google Scholar

Adang M.J., Crickmore N., Jurat-Fuentes J.L.: Diversity of Bacillus thuringiensis crystal toxins and mechanism of action. Adv. In Insect Phys. 47, 39–87 (2014)AdangM.J.CrickmoreN.Jurat-FuentesJ.L.Diversity of Bacillus thuringiensis crystal toxins and mechanism of actionAdv. In Insect Phys.473987201410.1016/B978-0-12-800197-4.00002-6Search in Google Scholar

Arias-Estévez M., López-Periago E., Martínez-Carballo E., Simal-Gándara J., Mejuto J.C., García-Río L.: The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agric. Ecosyst. Environ. 123, 247–260 (2008)Arias-EstévezM.López-PeriagoE.Martínez-CarballoE.Simal-GándaraJ.MejutoJ.C.García-RíoL.The mobility and degradation of pesticides in soils and the pollution of groundwater resourcesAgric. Ecosyst. Environ.123247260200810.1016/j.agee.2007.07.011Search in Google Scholar

Armada E., Azcón R., López-Castillo O.M., Calvo-Polanco M., Ruiz-Lozano J.M.: Autochthonous arbuscular mycorrhizal fungi and Bacillus thuringiensis from a degraded Mediterranean area can be used to improve physiological traits and performance of a plant of agronomic interest under drought conditions. Plant Physiol. Biochem. 90, 64–74 (2015)ArmadaE.AzcónR.López-CastilloO.M.Calvo-PolancoM.Ruiz-LozanoJ.M.Autochthonous arbuscular mycorrhizal fungi and Bacillus thuringiensis from a degraded Mediterranean area can be used to improve physiological traits and performance of a plant of agronomic interest under drought conditionsPlant Physiol. Biochem.906474201510.1016/j.plaphy.2015.03.00425813343Search in Google Scholar

Azmi N.U., Ghafar N.S.A., Yin C.J., Yakubu S., Adli A.A., Aziz N.A.A., Mustafa M.: Toxicity of Bacillus thuringiensis biopesticide produced in shrimp pond sludge as alternative culture medium against Bactrocera dorsalis ( Hendel ). Acta Biol. Malaysiana. 4, 5–16 (2015)AzmiN.U.GhafarN.S.A.YinC.J.YakubuS.AdliA.A.AzizN.A.A.MustafaM.Toxicity of Bacillus thuringiensis biopesticide produced in shrimp pond sludge as alternative culture medium against Bactrocera dorsalis ( Hendel )Acta Biol. Malaysiana.45162015Search in Google Scholar

Bai Y., Zhou X., Smith D.L.: Crop ecology, management and quality: Enhanced soybean plant growth resulting from coinoculation of Bacillus strains with Bradyrhizobium japonicum. Crop Sci. 43, 1774–1781 (2003)BaiY.ZhouX.SmithD.L.Crop ecology, management and quality: Enhanced soybean plant growth resulting from coinoculation of Bacillus strains with Bradyrhizobium japonicumCrop Sci.4317741781200310.2135/cropsci2003.1774Search in Google Scholar

Barboza-Corona J.E., de la Fuente-Salcido N., Alva-Murillo N., Ochoa-Zarzosa A., López-Meza J.E.: Activity of bacteriocins synthesized by Bacillus thuringiensis against Staphylococcus aureus isolates associated to bovine mastitis. Vet. Microbiol. 138, 179–183 (2009)Barboza-CoronaJ.E.de la Fuente-SalcidoN.Alva-MurilloN.Ochoa-ZarzosaA.López-MezaJ.E.Activity of bacteriocins synthesized by Bacillus thuringiensis against Staphylococcus aureus isolates associated to bovine mastitisVet. Microbiol.138179183200910.1016/j.vetmic.2009.03.01819359107Search in Google Scholar

de Barjac H., Frachon E.: Classification of Bacillus thuringiensis strains. Entomophaga. 35, 233–240 (1990)de BarjacH.FrachonE.Classification of Bacillus thuringiensis strainsEntomophaga.35233240199010.1007/BF02374798Search in Google Scholar

Bartoszewicz M., Czyżewska U.: Taksonomia, wirulencja i cykle życiowe Bacillus cereus sensu lato. Post. Mikrobiol. 56, 440–450 (2017)BartoszewiczM.CzyżewskaU.Taksonomia, wirulencja i cykle życiowe Bacillus cereus sensu latoPost. Mikrobiol.564404502017Search in Google Scholar

Baxter S. W., Badenes-Pérez F.R., Morrison A., Vogel H., Crickmore N., Kain W., Wang P., Heckel D.G., Jiggins C.D.: Parallel evolution of Bacillus thuringiensis toxin resistance in Lepidoptera. Genetics 189, 675–679 (2011)BaxterS. W.Badenes-PérezF.R.MorrisonA.VogelH.CrickmoreN.KainW.WangP.HeckelD.G.JigginsC.D.Parallel evolution of Bacillus thuringiensis toxin resistance in LepidopteraGenetics189675679201110.1534/genetics.111.130971318981521840855Search in Google Scholar

Bechtel D. B., Bulla L. A.: Ultrastructural analysis of membrane development during Bacillus thuringiensis sporulation. J. Ultrasructure Res. 79, 121–132 (1982)BechtelD. B.BullaL. A.Ultrastructural analysis of membrane development during Bacillus thuringiensis sporulationJ. Ultrasructure Res.79121132198210.1016/S0022-5320(82)90024-7Search in Google Scholar

Błaszczyk U., Moczarny J.: Bakteriocyny bakterii Gram-ujemnych – struktura, mechanizm dziaania i zastosowanie. Post. Mikrobiol. 55, 157–171 (2016)BłaszczykU.MoczarnyJ.Bakteriocyny bakterii Gram-ujemnych – struktura, mechanizm dziaania i zastosowaniePost. Mikrobiol.551571712016Search in Google Scholar

Brar S.K., Verma M., Tyagi R.D., Valéro J.R., Surampalli R.Y.: Efficient centrifugal recovery of Bacillus thuringiensis biopesticides from fermented wastewater and wastewater sludge. Water Res. 40, 1310–1320 (2006)BrarS.K.VermaM.TyagiR.D.ValéroJ.R.SurampalliR.Y.Efficient centrifugal recovery of Bacillus thuringiensis biopesticides from fermented wastewater and wastewater sludgeWater Res.4013101320200610.1016/j.watres.2006.01.02816515801Search in Google Scholar

Brar S.K., Verma M., Tyagi R.D., Valéro J.R., Surampalli R.Y.: Concurrent degradation of dimethyl phthalate (DMP) during production of Bacillus thuringiensis based biopesticides. J. Hazard. Mater. 171, 1016–1023 (2009)BrarS.K.VermaM.TyagiR.D.ValéroJ.R.SurampalliR.Y.Concurrent degradation of dimethyl phthalate (DMP) during production of Bacillus thuringiensis based biopesticidesJ. Hazard. Mater.17110161023200910.1016/j.jhazmat.2009.06.10819615820Search in Google Scholar

Brasseur K., Auger P., Asselin E., Parent S., Côté J.C., Sirois M.: Parasporin-2 from a new Bacillus thuringiensis 4r2 strain induces caspases activation and apoptosis in human cancer cells. PLoS One. 10, 1–22 (2015)BrasseurK.AugerP.AsselinE.ParentS.CôtéJ.C.SiroisM.Parasporin-2 from a new Bacillus thuringiensis 4r2 strain induces caspases activation and apoptosis in human cancer cellsPLoS One.10122201510.1371/journal.pone.0135106453250626263002Search in Google Scholar

Bravo A., Gómez I., Conde J., Muñoz-Garay C., Sánchez J., Miranda R., Zhuang M., Gill S.S., Soberón M.: Oligomerization triggers binding of a Bacillus thuringiensis Cry1Ab pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains. Biochim. Biophys. Acta – Biomembr. 1667, 38–46 (2004)BravoA.GómezI.CondeJ.Muñoz-GarayC.SánchezJ.MirandaR.ZhuangM.GillS.S.SoberónM.Oligomerization triggers binding of a Bacillus thuringiensis Cry1Ab pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomainsBiochim. Biophys. Acta – Biomembr.16673846200410.1016/j.bbamem.2004.08.01315533304Search in Google Scholar

Bravo A., Gill S.S., Soberón M.: Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon. 49, 423–435 (2007)BravoA.GillS.S.SoberónM.Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect controlToxicon.49423435200710.1016/j.toxicon.2006.11.022185735917198720Search in Google Scholar

Bravo A., Likitvivatanavong S., Gill S.S., Soberón M.: Bacillus thuringiensis: A story of a successful bioinsecticide. Insect Biochem. Mol. Biol. 41, 423–431 (2011)BravoA.LikitvivatanavongS.GillS.S.SoberónM.Bacillus thuringiensis: A story of a successful bioinsecticideInsect Biochem. Mol. Biol.41423431201110.1016/j.ibmb.2011.02.006368988521376122Search in Google Scholar

Bulla L.A., Bechtel D.B., Kramer K.J., Shethna Y.I., Aronson A.I., Fitz-James P.C.: Ultrastructure, physiology and biochemistry of Bacillus thuringiensis. Crit. Rev. Microbiol. 8, 147–204 (1980)BullaL.A.BechtelD.B.KramerK.J.ShethnaY.I.AronsonA.I.Fitz-JamesP.C.Ultrastructure, physiology and biochemistry of Bacillus thuringiensisCrit. Rev. Microbiol.8147204198010.3109/104084180090811247000441Search in Google Scholar

Chen S., Deng Y., Chang C., Lee J., Cheng Y., Cui Z., Zhou J., He F., Hu M., Zhang L.H.: Pathway and kinetics of cyhalothrin biodegradation by Bacillus thuringiensis strain ZS-19. Sci. Rep. 5, 1–10(2015)ChenS.DengY.ChangC.LeeJ.ChengY.CuiZ.ZhouJ.HeF.HuM.ZhangL.H.Pathway and kinetics of cyhalothrin biodegradation by Bacillus thuringiensis strain ZS-19Sci. Rep.5110201510.1038/srep08784435010125740758Search in Google Scholar

Cherif A., Rezgui W., Raddadi N., Daffonchio D., Boudabous A.: Characterization and partial purification of entomocin 110, a newly identified bacteriocin from Bacillus thuringiensis subsp. entomocidus HD110. Microbiol. Res. 163, 684–692 (2008)CherifA.RezguiW.RaddadiN.DaffonchioD.BoudabousA.Characterization and partial purification of entomocin 110, a newly identified bacteriocin from Bacillus thuringiensis subsp. entomocidus HD110Microbiol. Res.163684692200810.1016/j.micres.2006.10.00519216106Search in Google Scholar

Ciesielska J., Malusà E., Sas – Paszt L.: Środki ochrony roślin stosowane w rolnictwie ekologicznym. Opracowanie innowacyjnych technologii dla ekologicznej produkcji roślin sadowniczych. praca 3, 1–81 (2011)CiesielskaJ.MalusàE.Sas – PasztL.Środki ochrony roślin stosowane w rolnictwie ekologicznym. Opracowanie innowacyjnych technologii dla ekologicznej produkcji roślin sadowniczych. praca31812011Search in Google Scholar

Crickmore N., Zeigler D.R., Feitelson J., Schnepf E., Van Rie J., Lereclus D., Baum J., Dean D.H.: Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62, 775–806 (1998)CrickmoreN.ZeiglerD.R.FeitelsonJ.SchnepfE.Van RieJ.LereclusD.BaumJ.DeanD.H.Bacillus thuringiensis and its pesticidal crystal proteinsMicrobiol. Mol. Biol. Rev.62775806199810.1128/MMBR.62.3.775-806.1998Search in Google Scholar

Dominik A., Schönthaler J.: Integrowana ochrona roślin w gospodarstwie. Centrum Doradztwa Rolniczego w Brwinowie (2012)DominikA.SchönthalerJ.Integrowana ochrona roślin w gospodarstwie. Centrum Doradztwa Rolniczego w Brwinowie2012Search in Google Scholar

Dziennik Urzędowy Unii Europejskiej: Rozporządzenie Parlamentu Europejskiego i Rady (WE) nr 1107/2009 dotyczące wprowadzania do obrotu środków ochrony roślin i uchylające dyrektywy Rady 79/117/EWG i 91/414/EWG, z dnia 21.10.2009 roku (2009)Dziennik Urzędowy Unii Europejskiej: Rozporządzenie Parlamentu Europejskiego i Rady (WE) nr 1107/2009 dotyczące wprowadzania do obrotu środków ochrony roślin i uchylające dyrektywy Rady 79/117/EWG i 91/414/EWG, z dnia 21.10.2009 roku2009Search in Google Scholar

Dziennik Urzędowy Unii Europejskiej: Dyrektywa Parlamentu Europejskiego i Rady 2009/128/WE z dnia 21 października 2009 r. ustanawiająca ramy wspólnotowego działania na rzecz zrównoważonego stosowania pestycydów(2009)Dziennik Urzędowy Unii Europejskiej: Dyrektywa Parlamentu Europejskiego i Rady 2009/128/WE z dnia 21 października 2009 r. ustanawiająca ramy wspólnotowego działania na rzecz zrównoważonego stosowania pestycydów2009Search in Google Scholar

Dziennik Ustaw Rzeczypospolitej Polskiej: Ustawa o środkach ochrony roślin z dnia 8.03.2013 roku, Warszawa (2013)Dziennik Ustaw Rzeczypospolitej Polskiej: Ustawa o środkach ochrony roślin z dnia 8.03.2013 rokuWarszawa2013Search in Google Scholar

Dziennik Ustaw Rzeczypospolitej Polskiej: Obwieszczenie Marszałka Sejmu Rzeczypospolitej Polskiej w sprawie ogłoszenia jednolitego tekstu ustawy o ochronie roślin z dnia 12.03. 2014 roku, Warszawa (2014)Dziennik Ustaw Rzeczypospolitej Polskiej: Obwieszczenie Marszałka Sejmu Rzeczypospolitej Polskiej w sprawie ogłoszenia jednolitego tekstu ustawy o ochronie roślin z dnia 12.03. 2014 rokuWarszawa2014Search in Google Scholar

Fagerlund A., Dubois T., Økstad O.A., Verplaetse E., Gilois N., Bennaceur I., Perchat S., Gominet M., Aymerich S., Kolstø A.B., Lereclus D., Gohar M.: SinR controls enterotoxin expression in Bacillus thuringiensis biofilms. PLoS One, 9, e87532 (2014)FagerlundA.DuboisT.ØkstadO.A.VerplaetseE.GiloisN.BennaceurI.PerchatS.GominetM.AymerichS.KolstøA.B.LereclusD.GoharM.SinR controls enterotoxin expression in Bacillus thuringiensis biofilmsPLoS One,9e87532201410.1371/journal.pone.0087532Search in Google Scholar

Fang J., Xu X., Wang P., Zhao J.Z., Shelton A.M., Cheng J., Feng M.G., Shen Z.: Characterization of chimeric Bacillus thuringiensis Vip3 toxins. Appl. Environ. Microbiol. 73, 956–961 (2007)FangJ.XuX.WangP.ZhaoJ.Z.SheltonA.M.ChengJ.FengM.G.ShenZ.Characterization of chimeric Bacillus thuringiensis Vip3 toxinsAppl. Environ. Microbiol.73956961200710.1128/AEM.02079-06Search in Google Scholar

Ferreira L., Rosales E., Danko A.S., Sanromán M A., Pazos M.M.: Bacillus thuringiensis a promising bacterium for degrading emerging pollutants. Process Saf. Environ. Prot. 101, 19–26 (2016)FerreiraL.RosalesE.DankoA.S.SanrománM A.PazosM.M.Bacillus thuringiensis a promising bacterium for degrading emerging pollutantsProcess Saf. Environ. Prot.1011926201610.1016/j.psep.2015.05.003Search in Google Scholar

Frankenhuyzen K. van: Insecticidal activity of Bacillus thuringiensis crystal proteins. J. Invertebr. Pathol. 101, 1–16 (2009)FrankenhuyzenK.van: Insecticidal activity of Bacillus thuringiensis crystal proteinsJ. Invertebr. Pathol.101116200910.1016/j.jip.2009.02.009Search in Google Scholar

Gomaa E.Z.: Chitinase production by Bacillus thuringiensis and Bacillus licheniformis: Their potential in antifungal biocontrol. J. Microbiol. 50, 103–111 (2012)GomaaE.Z.Chitinase production by Bacillus thuringiensis and Bacillus licheniformis: Their potential in antifungal biocontrolJ. Microbiol.50103111201210.1007/s12275-012-1343-ySearch in Google Scholar

Gómez I., Sánchez J., Miranda R., Bravo A., Soberón M.: Cadherin-like receptor binding facilitates proteolytic cleavage of helix α-1 in domain I and oligomer pre-pore formation of Bacillus thuringiensis Cry1Ab toxin. FEBS Lett. 513, 242–246 (2002)GómezI.SánchezJ.MirandaR.BravoA.SoberónM.Cadherin-like receptor binding facilitates proteolytic cleavage of helix α-1 in domain I and oligomer pre-pore formation of Bacillus thuringiensis Cry1Ab toxinFEBS Lett.513242246200210.1016/S0014-5793(02)02321-9Search in Google Scholar

Helgason E., Økstad O.A., Caugant D.A., Johansen H.A., Fouet A., Mock M., Hegna I., Kolsto A.B.: Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis – one species on the basis of genetic evidence. Appl. Environ. Microbiol. 66, 2627–2630 (2000)HelgasonE.ØkstadO.A.CaugantD.A.JohansenH.A.FouetA.MockM.HegnaI.KolstoA.B.Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis – one species on the basis of genetic evidenceAppl. Environ. Microbiol6626272630200010.1128/AEM.66.6.2627-2630.2000Search in Google Scholar

Hernández C. S., Martínez C., Porcar M., Caballero P., Ferré J.: Correlation between serovars of Bacillus thuringiensis and type I β-exotoxin production. J. Invertebr. Pathol. 82, 57–62 (2003)HernándezC. S.MartínezC.PorcarM.CaballeroP.FerréJ.Correlation between serovars of Bacillus thuringiensis and type I β-exotoxin productionJ. Invertebr. Pathol.825762200310.1016/S0022-2011(02)00199-4Search in Google Scholar

Huang J., Ye J., Ma J., Gao J., Chen S., Wu X.: Triphenyltin biosorption, dephenylation pathway and cellular responses during triphenyltin biodegradation by Bacillus thuringiensis and tea saponin. Chem. Eng. J. 249, 167–173 (2014)HuangJ.YeJ.MaJ.GaoJ.ChenS.WuX.Triphenyltin biosorption, dephenylation pathway and cellular responses during triphenyltin biodegradation by Bacillus thuringiensis and tea saponinChem. Eng. J.249167173201410.1016/j.cej.2014.03.110Search in Google Scholar

Hung T.P., Truong L.V., Binh N.D., Frutos R., Quiquampoix H., Staunton S.: Persistence of detectable insecticidal proteins from Bacillus thuringiensis (Cry) and toxicity after adsorption on contrasting soils. Environ. Pollut. 208, 318–325 (2016)HungT.P.TruongL.V.BinhN.D.FrutosR.QuiquampoixH.StauntonS.Persistence of detectable insecticidal proteins from Bacillus thuringiensis (Cry) and toxicity after adsorption on contrasting soilsEnviron. Pollut.208318325201610.1016/j.envpol.2015.09.046Search in Google Scholar

Ibrahim M.A., Griko N., Junker M., Bulla L.A.: Bacillus thuringiensis A genomics and proteomics perspective. Bioeng. Bugs. 1, 31–50 (2010)IbrahimM.A.GrikoN.JunkerM.BullaL.A.Bacillus thuringiensis A genomics and proteomics perspectiveBioeng. Bugs.13150201010.4161/bbug.1.1.10519Search in Google Scholar

Jain D., Kachhwaha S., Jain R., Srivastava G., Kothari S.: Novel microbial route to synthesize nanoparticles using spore crystal mixture of Bacillus thuringiensis. Indian J. Exp. Biol. 48, 1152–1156 (2010)JainD.KachhwahaS.JainR.SrivastavaG.KothariS.Novel microbial route to synthesize nanoparticles using spore crystal mixture of Bacillus thuringiensisIndian J. Exp. Biol.48115211562010Search in Google Scholar

Jarrett P., Stephenson M.: Plasmid transfer between strains of Bacillus thuringiensis infecting Galleria mellonella and Spodoptera littoralis. Appl. Environ. Microbiol. 56, 1608–1614 (1990)JarrettP.StephensonM.Plasmid transfer between strains of Bacillus thuringiensis infecting Galleria mellonella and Spodoptera littoralisAppl. Environ. Microbiol.5616081614199010.1128/aem.56.6.1608-1614.1990Search in Google Scholar

Jouzani G. S., Valijanian E., Sharafi R.: Bacillus thuringiensis: a successful insecticide with new environmental features and tidings. Appl. Microbiol. Biotechnol. 101, 2691–2711 (2017)JouzaniG. S.ValijanianE.SharafiR.Bacillus thuringiensis: a successful insecticide with new environmental features and tidingsAppl. Microbiol. Biotechnol.10126912711201710.1007/s00253-017-8175-ySearch in Google Scholar

Katayama H., Yokota H., Akao T., Nakamura O., Ohba M., Mekada E., Mizuki E.: Parasporin-1, a novel cytotoxic protein to human cells from non-insecticidal parasporal inclusions of Bacillus thuringiensis. J. Biochem. 137, 17–25 (2005)KatayamaH.YokotaH.AkaoT.NakamuraO.OhbaM.MekadaE.MizukiE.Parasporin-1, a novel cytotoxic protein to human cells from non-insecticidal parasporal inclusions of Bacillus thuringiensisJ. Biochem.1371725200510.1093/jb/mvi003Search in Google Scholar

Khaleghi M., Khorrami S., Ravan H.: Identification of Bacillus thuringiensis bacterial strain isolated from the mine soil as a robust agent in the biosynthesis of silver nanoparticles with strong antibacterial and anti-biofilm activities. Biocatal. Agric. Biotechnol. 18, 101047 (2019)KhaleghiM.KhorramiS.RavanH.Identification of Bacillus thuringiensis bacterial strain isolated from the mine soil as a robust agent in the biosynthesis of silver nanoparticles with strong antibacterial and anti-biofilm activitiesBiocatal. Agric. Biotechnol.18101047201910.1016/j.bcab.2019.101047Search in Google Scholar

Kim P. I., Bai H., Bai D., Chae H., Chung S., Kim Y., Park R., Chi Y.T.: Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26. J. Appl. Microbiol. 97, 942–949 (2004)KimP. I.BaiH.BaiD.ChaeH.ChungS.KimY.ParkR.ChiY.T.Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26J. Appl. Microbiol.97942949200410.1111/j.1365-2672.2004.02356.xSearch in Google Scholar

Knowles B.H., Ellar D.J.: Colloid-osmotic lysis is a general feature of the mechanism of action of Bacillus thuringiensis δ-endotoxins with different insect specificity. Biochem. Biophys. Acta. 924, 509–518 (1987)KnowlesB.H.EllarD.J.Colloid-osmotic lysis is a general feature of the mechanism of action of Bacillus thuringiensis δ-endotoxins with different insect specificityBiochem. Biophys. Acta.924509518198710.1016/0304-4165(87)90167-XSearch in Google Scholar

Konecka E., Kaznowski A., Baranek J.: Wykorzystanie bakterii Bacillus thuringiensis. Post. Mikrobiol. 50, 303–311 (2011)KoneckaE.KaznowskiA.BaranekJ.Wykorzystanie bakterii Bacillus thuringiensisPost. Mikrobiol.503033112011Search in Google Scholar

Krishnan K., Ker J.E.A., Mohammed S.M., Nadarajah V.D.: Identification of Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a binding protein for a 68-kDa Bacillus thuringiensis parasporal protein cytotoxic against leukaemic cells. J. Biomed. Sci. 17, 1–11 (2010)KrishnanK.KerJ.E.A.MohammedS.M.NadarajahV.D.Identification of Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a binding protein for a 68-kDa Bacillus thuringiensis parasporal protein cytotoxic against leukaemic cellsJ. Biomed. Sci.17111201010.1186/1423-0127-17-86Search in Google Scholar

Krywienczyk J., Dulmage H.T., Fast P.G.: Occurrence of two serologically distinct groups within Bacillus thuringiensis serotype 3 ab var. kurstaki. J. Invertebr. Pathol. 31, 372–375 (1978)KrywienczykJ.DulmageH.T.FastP.G.Occurrence of two serologically distinct groups within Bacillus thuringiensis serotype 3 ab varkurstaki. J. Invertebr. Pathol.31372375197810.1016/0022-2011(78)90232-XSearch in Google Scholar

de la Fuente-Salcido N.M., Casados-Vázquez L.E., Barboza-Corona J.E.: Bacteriocins of Bacillus thuringiensis can expand the potential of this bacterium to other areas rather than limit its use only as microbial insecticide. Can. J. Microbiol. 59, 515–522 (2013)de la Fuente-SalcidoN.M.Casados-VázquezL.E.Barboza-CoronaJ.E.Bacteriocins of Bacillus thuringiensis can expand the potential of this bacterium to other areas rather than limit its use only as microbial insecticideCan. J. Microbiol.59515522201310.1139/cjm-2013-0284Search in Google Scholar

Lecadet M.M., Frachon E., Cosmao Dumanoir V., Ripouteau H., Hamon S., Laurent P., Thiéry I.: Updating the H-antigen classification of Bacillus thuringiensis. J. Appl. Microbiol. 86, 660–672 (1999)LecadetM.M.FrachonE.Cosmao DumanoirV.RipouteauH.HamonS.LaurentP.ThiéryI.Updating the H-antigen classification of Bacillus thuringiensisJ. Appl. Microbiol.86660672199910.1046/j.1365-2672.1999.00710.xSearch in Google Scholar

Li C., Lu Q., Ye J., Qin H., Long Y., Wang L., Ou H.: Metabolic and proteomic mechanism of bisphenol A degradation by Bacillus thuringiensis. Sci. Total Environ. 640, 714–725 (2018)LiC.LuQ.YeJ.QinH.LongY.WangL.OuH.Metabolic and proteomic mechanism of bisphenol A degradation by Bacillus thuringiensisSci. Total Environ.640714725201810.1016/j.scitotenv.2018.05.352Search in Google Scholar

De Maagd R. A., Bravo A., Crickmore N.: How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet. 17, 193–199 (2001)De MaagdR. A.BravoA.CrickmoreN.How Bacillus thuringiensis has evolved specific toxins to colonize the insect worldTrends Genet.17193199200110.1016/S0168-9525(01)02237-5Search in Google Scholar

Malinowski H.: Powstawanie odporności na insektycydy u owadów. Pr. Inst. Badaw. Leśnictwa. seria A, 1 [908–912], 5–40 (2001)MalinowskiH.Powstawanie odporności na insektycydy u owadówPr. Inst. Badaw. Leśnictwa. seria A1908–9125402001Search in Google Scholar

Mandal K., Singh B., Jariyal M., Gupta V.K.: Microbial degradation of fipronil by Bacillus thuringiensis. Ecotoxicol. Environ. Saf. 93, 87–92 (2013)MandalK.SinghB.JariyalM.GuptaV.K.Microbial degradation of fipronil by Bacillus thuringiensisEcotoxicol. Environ. Saf.938792201310.1016/j.ecoenv.2013.04.00123618775Search in Google Scholar

Maughan H., Van der Auwera G.: Bacillus taxonomy in the geno mic era finds phenotypes to be essential though often misleading. Infect. Genet. Evol. 11, 789–797 (2011)MaughanH.Van der AuweraG.Bacillus taxonomy in the geno mic era finds phenotypes to be essential though often misleadingInfect. Genet. Evol.11789797201110.1016/j.meegid.2011.02.00121334463Search in Google Scholar

Melo A.L.D.A., Soccol V.T., Soccol C.R.: Bacillus thuringiensis: Mechanism of action, resistance, and new applications: A review. Crit. Rev. Biotechnol. 36, 317–326 (2016)MeloA.L.D.A.SoccolV.T.SoccolC.R.Bacillus thuringiensis: Mechanism of action, resistance, and new applications: A reviewCrit. Rev. Biotechnol.36317326201610.3109/07388551.2014.96079325264571Search in Google Scholar

Mishra P.K., Mishra S., Selvakumar G., Bisht J.K., Kundu S., Gupta H.S.: Coinoculation of Bacillus thuringeinsis-KR1 with Rhizobium leguminosarum enhances plant growth and nodulation of pea (Pisum sativum L.) and lentil (Lens culinaris L.). World J. Microbiol. Biotechnol. 25, 753–761 (2009)MishraP.K.MishraS.SelvakumarG.BishtJ.K.KunduS.GuptaH.S.Coinoculation of Bacillus thuringeinsis-KR1 with Rhizobium leguminosarum enhances plant growth and nodulation of pea (Pisum sativum L.) and lentil (Lens culinaris L.)World J. Microbiol. Biotechnol.25753761200910.1007/s11274-009-9963-zSearch in Google Scholar

Mishra P.K., Mishra S., Selvakumar G., Kundu S., Shankar Gupta H.: Enhanced soybean (Glycine max L.) plant growth and nodulation by Bradyrhizobium japonicum-SB1 in presence of Bacillus thuringiensis-KR1. Acta Agric. Scand. Sect. B Soil Plant Sci. 59, 189–196 (2009)MishraP.K.MishraS.SelvakumarG.KunduS.Shankar GuptaH.Enhanced soybean (Glycine max L.) plant growth and nodulation by Bradyrhizobium japonicum-SB1 in presence of Bacillus thuringiensis-KR1Acta Agric. Scand. Sect. B Soil Plant Sci.591891962009Search in Google Scholar

Moazamian E., Bahador N., Azarpira N., Rasouli M.: Anti-cancer parasporin toxins of new Bacillus thuringiensis against human colon (HCT-116) and blood (CCRF-CEM) cancer cell lines. Curr. Microbiol. 75, 1090–1098 (2018)MoazamianE.BahadorN.AzarpiraN.RasouliM.Anti-cancer parasporin toxins of new Bacillus thuringiensis against human colon (HCT-116) and blood (CCRF-CEM) cancer cell linesCurr. Microbiol.7510901098201810.1007/s00284-018-1479-z29687151Search in Google Scholar

Mrówczyński M., Wachowiak H., Pruszyński G.: Atlas szkodników owadów pożytecznych i zapylających szkodniki rzepaku. Instytut Ochrony Roślin, Państwowy Instytut Badawczy, ISBN 978-83-89867-97-1 (2014)MrówczyńskiM.WachowiakH.PruszyńskiG.Atlas szkodników owadów pożytecznych i zapylających szkodniki rzepakuInstytut Ochrony Roślin, Państwowy Instytut BadawczyISBN978-83-89867-97-12014Search in Google Scholar

Mucha S.: Integrowana ochrona roślin. https://www.gov.pl/web/rolnictwo/integrowana-ochrona-roslinMuchaS.Integrowana ochrona roślinhttps://www.gov.pl/web/rolnictwo/integrowana-ochrona-roslinSearch in Google Scholar

Nakamura L.K.: DNA Relatedness among Bacillus thuringiensis Serovars. Int. J. Syst. Bacteriol. 44, 125–129 (2009)NakamuraL.K.DNA Relatedness among Bacillus thuringiensis SerovarsInt. J. Syst. Bacteriol.44125129200910.1099/00207713-44-1-1258123555Search in Google Scholar

Nayak P.S., Arakha M., Kumar A., Asthana S., Mallick B.C., Jha S.: An approach towards continuous production of silver nanoparticles using Bacillus thuringiensis. RSC Adv. 6, 8232–8242 (2016)NayakP.S.ArakhaM.KumarA.AsthanaS.MallickB.C.JhaS.An approach towards continuous production of silver nanoparticles using Bacillus thuringiensisRSC Adv.682328242201610.1039/C5RA21281BSearch in Google Scholar

NCBI Taxonomy: Bacillus thuringiensis Taxonomy. ncbi.nlm.nih. gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=1428&lvl= 3&p=has_linkout&p=blast_url&p=genome_blast&lin=f&keep= 1&srchmode=1&unlock (2019)NCBI TaxonomyBacillus thuringiensis Taxonomyhttp://ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=1428&lvl=3&p=has_linkout&p=blast_url&p=genome_blast&lin=f&keep=1&srchmode=1&unlock2019Search in Google Scholar

Nicolopoulou-Stamati P., Maipas S., Kotampasi C., Stamatis P., Hens L.: Chemical Pesticides and Human Health: The urgent need for a new concept in agriculture. Front. Public Health. 4, 148 (2016)Nicolopoulou-StamatiP.MaipasS.KotampasiC.StamatisP.HensL.Chemical Pesticides and Human Health: The urgent need for a new concept in agricultureFront. Public Health.4148201610.3389/fpubh.2016.00148494757927486573Search in Google Scholar

Ohba M., Mizuki E., Uemori A.: Parasporin, a new anticancer protein group from Bacillus thuringiensis. Anticancer Res. 29, 427–433 (2009)OhbaM.MizukiE.UemoriA.Parasporin, a new anticancer protein group from Bacillus thuringiensisAnticancer Res.294274332009Search in Google Scholar

Okumura S., Saitoh H., Ishikawa T., Wasano N., Yamashita S., Kusumoto K.I., Akao T., Mizuki E., Ohba M., Inouye K.: Identification of a novel cytotoxic protein, Cry45Aa, from Bacillus thuringiensis A1470 and its selective cytotoxic activity against various mammalian cell lines. J. Agric. Food Chem. 53, 6313–6318 (2005)OkumuraS.SaitohH.IshikawaT.WasanoN.YamashitaS.KusumotoK.I.AkaoT.MizukiE.OhbaM.InouyeK.Identification of a novel cytotoxic protein, Cry45Aa, from Bacillus thuringiensis A1470 and its selective cytotoxic activity against various mammalian cell linesJ. Agric. Food Chem.5363136318200510.1021/jf050612916076112Search in Google Scholar

Pacheco-Cano R.D., de la Fuente-Salcido N.M., Salcedo-Hernández R., León-Galván M.F., Bideshi D.K., Hernández-Guzmán G., Barboza-Corona J.E.: Characterization, N-terminal sequencing and classification of Tolworthcin 524: A bacteriocin produced by Bacillus thuringiensis subsp. tolworthi. Microbiol. Res. 169, 948–953 (2014)Pacheco-CanoR.D.de la Fuente-SalcidoN.M.Salcedo-HernándezR.León-GalvánM.F.BideshiD.K.Hernández-GuzmánG.Barboza-CoronaJ.E.Characterization, N-terminal sequencing and classification of Tolworthcin 524: A bacteriocin produced by Bacillus thuringiensis subsptolworthi. Microbiol. Res.169948953201410.1016/j.micres.2014.04.00524880804Search in Google Scholar

Poornima K., Selvanayagam P., Shenbagarathai R.: Identification of native Bacillus thuringiensis strain from South India having specific cytocidal activity against cancer cells. J. Appl. Microbiol. 109, 348–354 (2010)PoornimaK.SelvanayagamP.ShenbagarathaiR.Identification of native Bacillus thuringiensis strain from South India having specific cytocidal activity against cancer cellsJ. Appl. Microbiol.109348354201010.1111/j.1365-2672.2010.04697.x20337765Search in Google Scholar

Raymond B., Johnston P.R., Nielsen-LeRoux C., Lereclus D., Crickmore N.: Bacillus thuringiensis: An impotent pathogen? Trends Microbiol. 18, 189–194 (2010)RaymondB.JohnstonP.R.Nielsen-LeRouxC.LereclusD.CrickmoreN.Bacillus thuringiensis: An impotent pathogen?Trends Microbiol.18189194201010.1016/j.tim.2010.02.00620338765Search in Google Scholar

Reyes-Ramírez A., Escudero-Abarca B. I., Aguilar-Uscanga G., Hayward-Jones P.M., Barboza-Corona J.E.: Antifungal activity of Bacillus thuringiensis chitinase and its potential for the biocontrol of phytopathogenic fungi in soybean seeds. J. Food Sci. 69, M131–M134 (2006)Reyes-RamírezA.Escudero-AbarcaB. I.Aguilar-UscangaG.Hayward-JonesP.M.Barboza-CoronaJ.E.Antifungal activity of Bacillus thuringiensis chitinase and its potential for the biocontrol of phytopathogenic fungi in soybean seedsJ. Food Sci.69M131M134200610.1111/j.1365-2621.2004.tb10721.xSearch in Google Scholar

Rocha L.O., Tralamazza S.M., Reis G.M., Rabinovitch L., Barbosa C.B., Corrêa B.: Multi-method approach for characterizing the interaction between Fusarium verticillioides and Bacillus thuringiensis subsp. kurstaki. PLoS One. 9, e92189 (2014)RochaL.O.TralamazzaS.M.ReisG.M.RabinovitchL.BarbosaC.B.CorrêaB.Multi-method approach for characterizing the interaction between Fusarium verticillioides and Bacillus thuringiensis subspkurstaki. PLoS One.9e92189201410.1371/journal.pone.0092189398918824739804Search in Google Scholar

Sadif N., Cherif M., Fliss I., Boudabbous A., Antoun H.: Evaluation of bacterial isolates from salty soils and Bacillus thuringiensis strains for the biocontrol of Fusarium dry rot of potato tubers. J. Plant Pathol. 83, 101–117 (2001)SadifN.CherifM.FlissI.BoudabbousA.AntounH.Evaluation of bacterial isolates from salty soils and Bacillus thuringiensis strains for the biocontrol of Fusarium dry rot of potato tubersJ. Plant Pathol.831011172001Search in Google Scholar

Sampson M.N., Gooday G.W.: Involvement of chitinases of Bacillus thuringiensis during pathogenesis in insects. Microbiol. 144, 2189–2194 (1998)SampsonM.N.GoodayG.W.Involvement of chitinases of Bacillus thuringiensis during pathogenesis in insectsMicrobiol.14421892194199810.1099/00221287-144-8-21899720040Search in Google Scholar

Shrestha A., Sultana R., Chae J.C., Kim K., Lee K.J.: Bacillus thuringiensis C25 which is rich in cell wall degrading enzymes efficiently controls lettuce drop caused by Sclerotinia minor. Eur. J. Plant Pathol. 142, 577–589 (2015)ShresthaA.SultanaR.ChaeJ.C.KimK.LeeK.J.Bacillus thuringiensis C25 which is rich in cell wall degrading enzymes efficiently controls lettuce drop caused by Sclerotinia minorEur. J. Plant Pathol.142577589201510.1007/s10658-015-0636-5Search in Google Scholar

Sierpinska A.: Bacillus thuringiensis w ochronie lasu – alternatywa dla insektycydów chemicznych. Prace Instytutu Badawczego Leśnictwa.seria A, 2 [895–899], 71–99 (2000)SierpinskaA.Bacillus thuringiensis w ochronie lasu – alternatywa dla insektycydów chemicznych. Prace Instytutu Badawczego Leśnictwa.seria A2895–89971992000Search in Google Scholar

Singh B., Arora R., Gosal S.S.: Biological and molecular approaches in pest management. Scientific Publisher (2015)SinghB.AroraR.GosalS.S.Biological and molecular approaches in pest managementScientific Publisher2015Search in Google Scholar

Soufiane B., Côté J.C.: Discrimination among Bacillus thuringiensis H serotypes, serovars and strains based on 16S rRNA, gyrB and aroE gene sequence analyses. Antonie van Leeuwenhoek, Int. J. Gen. Mol. Microbiol. 95, 33–45 (2009)SoufianeB.CôtéJ.C.Discrimination among Bacillus thuringiensis H serotypes, serovars and strains based on 16S rRNA, gyrB and aroE gene sequence analysesAntonie van Leeuwenhoek, Int. J. Gen. Mol. Microbiol.953345200910.1007/s10482-008-9285-418839329Search in Google Scholar

Sułowicz S., Piotrowska-Seget Z.: Oddziaływanie fungicydów na mikroorganizmy w środowisku glebowym. Post. Mikrobiol. 55, 12–18 (2016)SułowiczS.Piotrowska-SegetZ.Oddziaływanie fungicydów na mikroorganizmy w środowisku glebowymPost. Mikrobiol.5512182016Search in Google Scholar

Thakore Y.: The biopesticide market for global agricultural use. Ind. Biotechnol. 2, 194–208 (2006)ThakoreY.The biopesticide market for global agricultural useInd. Biotechnol.2194208200610.1089/ind.2006.2.194Search in Google Scholar

Vilas-Bôas G.T., Peruca A.P.S., Arantes O.M.N.: Biology and taxonomy of Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis. Can. J. Microbiol. 53, 673–687 (2007)Vilas-BôasG.T.PerucaA.P.S.ArantesO.M.N.Biology and taxonomy of Bacillus cereusBacillus anthracis and Bacillus thuringiensisCan. J. Microbiol.53673687200710.1139/W07-02917668027Search in Google Scholar

Weerasinghe P., Buja L. M.: Oncosis: An important non-apoptotic mode of cell death. Exp. Mol. Pathol. 93, 302–308 (2012)WeerasingheP.BujaL. M.Oncosis: An important non-apoptotic mode of cell deathExp. Mol. Pathol.93302308201210.1016/j.yexmp.2012.09.01823036471Search in Google Scholar

Wei S., Chelliah R., Park B.J., Kim S.H., Forghani F., Cho M.S., Park D.S., Jin Y.G., Oh D.H.: Differentiation of Bacillus thuringiensis from Bacillus cereus group using a unique marker based on Real-Time PCR. Front. Microbiol. 10, 1–8 (2019)WeiS.ChelliahR.ParkB.J.KimS.H.ForghaniF.ChoM.S.ParkD.S.JinY.G.OhD.H.Differentiation of Bacillus thuringiensis from Bacillus cereus group using a unique marker based on Real-Time PCRFront. Microbiol.10182019Search in Google Scholar

Weinzierl R., Henn T., Koehler P.G., Tucker C.L. Microbial insecticides. Cooperative Extension Service, University of Illinois at Urbana-Champaign. 1295 (1989).WeinzierlR.HennT.KoehlerP.G.TuckerC.L.Microbial insecticidesCooperative Extension Service, University of Illinois at Urbana-Champaign12951989Search in Google Scholar

Xu Y., Nagai M., Bagdasarian M., Smith T.W.: Expression of the p20 gene from Bacillus thuringiensis H-14 increases Cry11A toxin production and enhances mosquito-larvicidal activity in recombinant gram-negative bacteria. Appl Env. Microbiol. 67, 3010–3015 (2001)XuY.NagaiM.BagdasarianM.SmithT.W.Expression of the p20 gene from Bacillus thuringiensis H-14 increases Cry11A toxin production and enhances mosquito-larvicidal activity in recombinant gram-negative bacteriaAppl Env. Microbiol.6730103015200110.1128/AEM.67.7.3010-3015.20019297311425714Search in Google Scholar

Yi W., Li C., Ye J., Long Y., Qin H.: Correlation between triphenyltin degradation and cellular metabolic responses of Bacillus thuringiensis. Int. Biodeterior. Biodegrad. 122, 61–68 (2017)YiW.LiC.YeJ.LongY.QinH.Correlation between triphenyltin degradation and cellular metabolic responses of Bacillus thuringiensisInt. Biodeterior. Biodegrad.1226168201710.1016/j.ibiod.2017.04.020Search in Google Scholar

Yi W., Yang K., Ye J., Long Y., Ke J., Ou H.: Triphenyltin degradation and proteomic response by an engineered Escherichia coli expressing cytochrome P450 enzyme. Ecotoxicol. Environ. Saf. 137, 29–34 (2017)YiW.YangK.YeJ.LongY.KeJ.OuH.Triphenyltin degradation and proteomic response by an engineered Escherichia coli expressing cytochrome P450 enzymeEcotoxicol. Environ. Saf.1372934201710.1016/j.ecoenv.2016.11.01227907843Search in Google Scholar

Zhang X., Candas M., Griko N.B., Rose-Young L., Bulla L.A.: Cytotoxicity of Bacillus thuringiensis Cry1Ab toxin depends on specific binding of the toxin to the cadherin receptor BT-R1 expressed in insect cells. Cell Death Differ. 12, 1407–1416 (2005)ZhangX.CandasM.GrikoN.B.Rose-YoungL.BullaL.A.Cytotoxicity of Bacillus thuringiensis Cry1Ab toxin depends on specific binding of the toxin to the cadherin receptor BT-R1 expressed in insect cellsCell Death Differ.1214071416200510.1038/sj.cdd.440167515920532Search in Google Scholar

Zhang X., Candas M., Griko N.B., Taussig R., Bulla L.A.: A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. Proc. Natl. Acad. Sci. 103, 9897–9902 (2006)ZhangX.CandasM.GrikoN.B.TaussigR.BullaL.A.A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensisProc. Natl. Acad. Sci.10398979902200610.1073/pnas.0604017103150255016788061Search in Google Scholar

Zhuang L., Zhou S., Wang Y., Chang M.: Mosquito biolarvicide production by sequential fermentation with dual strains of Bacillus thuringiensis subsp. israelensis and Bacillus sphaericus using sewage sludge. Bioresour. Technol. 102, 1574–1580 (2011)ZhuangL.ZhouS.WangY.ChangM.Mosquito biolarvicide production by sequential fermentation with dual strains of Bacillus thuringiensis subsp. israelensis and Bacillus sphaericus using sewage sludgeBioresour. Technol.10215741580201110.1016/j.biortech.2010.08.09020855197Search in Google Scholar

Zhuang L., Zhou S., Wang Y., Liu Z., Xu R.: Cost-effective production of Bacillus thuringiensis biopesticides by solid-state fermentation using wastewater sludge: Effects of heavy metals. Bioresour. Technol. 102, 4820–4826 (2011)ZhuangL.ZhouS.WangY.LiuZ.XuR.Cost-effective production of Bacillus thuringiensis biopesticides by solid-state fermentation using wastewater sludge: Effects of heavy metalsBioresour. Technol.10248204826201110.1016/j.biortech.2010.12.09821295967Search in Google Scholar

Zribi Zghal R., Kharrat M., Rebai A., Ben Khedher S., Jallouli W., Elleuch J., Ginibre C., Chandre F., Tounsi S.: Optimization of bio-insecticide production by Tunisian Bacillus thuringiensis israelensis and its application in the field. Biol. Control. 124, 46–52 (2018)Zribi ZghalR.KharratM.RebaiA.Ben KhedherS.JallouliW.ElleuchJ.GinibreC.ChandreF.TounsiS.Optimization of bio-insecticide production by Tunisian Bacillus thuringiensis israelensis and its application in the fieldBiol. Control.1244652201810.1016/j.biocontrol.2018.06.002Search in Google Scholar

eISSN:
2545-3149
Języki:
Angielski, Polski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Microbiology and Virology