Otwarty dostęp

Stress-Dilatancy for Soils. Part IV: Experimental Validation for Simple Shear Conditions

   | 17 maj 2017

Zacytuj

[1] ATKINSON J.H., LAN W.H.W., POWELL J.J.M., Measurement of soil strength in simple shear tests, Can. Geotech. J., 1991, 28, 255-262.10.1139/t91-031Search in Google Scholar

[2] BARDET J.P., PROUBET J., A Numerical Investigation of the Structure of Persistent Shear Bands in Granular Media, Geotechnique, 1991, 41, No. 4, 599-613.10.1680/geot.1991.41.4.599Search in Google Scholar

[3] BAREITHER C.A., BENSON C.H., EDIL T.B., Reproducibility of direct shear tests conducted on granular backfill materials, Geot. Test. J., 2007, Vol. 31, No. 1, 84-94.10.1520/GTJ100878Search in Google Scholar

[4] BOLTON M.D., The strength and dilatancy of sands, Geotechnique, 1986, 36, No. 1, 65-78.10.1680/geot.1986.36.1.65Search in Google Scholar

[5] BUDHU M., Simple shear deformation of sands, Ph.D. thesis, University of Cambridge, 1975.Search in Google Scholar

[6] CERATO A.B., LUTENEGGER A.L., Specimen size and scale effects of direct shear box tests of sands, Geotechnical Testing Journal, 2006, Vol. 29, No. 6, 1-10.10.1520/GTJ100312Search in Google Scholar

[7] COLE E.R., The behaviour of soils in the simple shear apparatus. Ph.D. thesis, University of Cambridge, 1967.Search in Google Scholar

[8] CUI L., O’SULLIVAN C., Exploiting the macro-and-microscale response of an idealised granular material in the direct shear apparatus, Geotechnique, 2006, 56, No. 7, 455-468.10.1680/geot.2006.56.7.455Search in Google Scholar

[9] GUTIERREZ M., WANG J., Non-coaxial version of Rowe’s stress-dilatancy relation, Granular Matter., 11, 129-137.10.1007/s10035-008-0124-0Search in Google Scholar

[10] HOSONO Y., YOSHIMINE M., Liquafaction of sand in simple shear condition. Cyclic Behaviour of Soils and Liquafaction Phenomena, Triantafyllidis T. (ed.), Balkema, Rotterdam 2004.10.1201/9781439833452.ch16Search in Google Scholar

[11] HOSONO Y., YOSHIMINE M., Liquafaction of sand in simple shear condition, Proc. of Int. Conf. on Cyclic Behaviour of Soils and Liquafaction Phenomena, Bohun, Germany, March 31th-April 2nd 2004.10.1201/9781439833452.ch16Search in Google Scholar

[12] HONG NAM N., KOSEKI J., Modelling quasi-elastic deformation properties of sand, Deformation Characteristics of Geomaterials, IS - Lyon 2003, 275-283.10.1201/NOE9058096043.ch34Search in Google Scholar

[13] JEWELL R.A., WROTH C.P., Direct shear tests on reinforced sand, Geotechnique, 1987, 37, No. 1, 53-68.10.1680/geot.1987.37.1.53Search in Google Scholar

[14] LIKOS W.J., WAYLLACE A., GODT J., LU N., Modified Direct Shear Apparatus for Unsaturated Sands at Low Suction and Stress, Geotechnical Testing Journal, 2010, 33, No. 4, 286-298.10.1520/GTJ102927Search in Google Scholar

[15] LINGS M.L., DIETZ M.S., An improved direct shear apparatus for sand, Geotechnique, 2004, 54, No. 4, 245-256.10.1680/geot.2004.54.4.245Search in Google Scholar

[16] LOPEZ-QUEROL S., COOP M.R., Drained cyclic behaviour of loose Dog’s Bay sand, Geotechnique, 2012, 62, No. 4, 281-289.10.1680/geot.8.P.105Search in Google Scholar

[17] LUZZANI L., COOP M.R., On the relationship between particle breakage and the critical state of sands, Soils and Foundations, 2002, Vol. 42, No. 2, 71-82.10.3208/sandf.42.2_71Search in Google Scholar

[18] MILATZ M., GRABE J., A new simple shear apparatus and testing method for unsaturated sands. Geotech. Testing J., 2015, Vol. 38, No. 1, 9-22.10.1520/GTJ20140035Search in Google Scholar

[19] MEEHAN C.L., BRANDON T.L., DUNCAN J.M., Measuring Drained Residual Strengths in the Bromhead Ring Shear, Geotechnical Testing Journal, 2007, 30, No. 6, 466-473.10.1520/GTJ101017Search in Google Scholar

[20] OCHIAI H., Stress condition within simple shear test specimen, Reports of the Faculty of Engineering, Nagasaki University, No. 12, February, 1979, 57-63.Search in Google Scholar

[21] ODA M., On stress-dilatancy relation of sand in simple shear test, Soils and Foundations, 1975, Vol. 15, No. 2, 17-29.10.3208/sandf1972.15.2_17Search in Google Scholar

[22] PALMEIRA E.M., MILLIGAN G.W.E., Scale Effects in Direct Shear Tests on Sand, Proc. of the 12th ICSMGE, 1989, Vol. 1, No. 1, 739-742.Search in Google Scholar

[23] POTTS D.M., DOUNIAS G.T., VAUGHAN P.R., Finite element analysis of the direct shear box test, Geotechnique, 1987, Vol. 37, No. 1, 11-23.10.1680/geot.1987.37.1.11Search in Google Scholar

[24] QIU Y.-Y., TATSUOKA F., UCHIMURA T., Constant Pressure and constant volume direct shear tests on reinforced sand, Soil and Foundations, 2000, 40, No. 4, 1-17.10.3208/sandf.40.4_1Search in Google Scholar

[25] SASSA K., WANG G., FUKUAKA H., Performing Undrained Shear Tests on Saturated Sands in a New Intelligent Type of Ring Shear Apparatus, Geotechnical Testing Journal, 2003, 26, No. 3, 257-265.10.1520/GTJ11304JSearch in Google Scholar

[26] SCARPELLI G., WOOD D.M., Experimental observations of shear band patterns in direct shear tests, IUTAM Conference on Deformation and Failure of Granular Materials. Delft/31-Aug.-3 Sept. 1982, 473-484.Search in Google Scholar

[27] SHIBUYA S., KOSEKI J., KAWAGUCHI T., Recent developments in deformation and strength testing of geomaterials, Deformation Characteristics of Geomaterials. Di Benedetto et al. (eds.), Taylor & Francis Group, London 2005, 3-28.Search in Google Scholar

[28] SHIBUYA S., MITACHI T., TAMATE S., Interpretation of direct shear box testing of sands as quasi-simple shear, Geotechnique, 1997, 47, No. 4, 769-790.10.1680/geot.1997.47.4.769Search in Google Scholar

[29] SHIPTON B., COOP M.R., On the compression behaviour of reconstituted soils, Soils and Foundations, 2012, 52, No. 4, 668-681.10.1016/j.sandf.2012.07.008Search in Google Scholar

[30] SMOLTCZYK U. ed., Geotechnical Engineering Handbook. Vol. 1: Fundamentals, Ernest & Sohn. A Wiley Company, Berlin 2002.Search in Google Scholar

[31] SZYPCIO Z., Stress-dilatancy for soils. Part I: The frictional state theory, Studia Geotechnica et Mechanica, 2016, Vol. 38, No. 4, 51-57.10.1515/sgem-2016-0030Search in Google Scholar

[32] SZYPCIO Z., Stress-dilatancy for soils. Part II: Experimental validation for triaxial tests, Studia Geotechnica et Mechanica, 2016, Vol. 38, No. 4, 59-65.10.1515/sgem-2016-0031Search in Google Scholar

[33] SZYPCIO Z., Stress-dilatancy for soils. Part III: Experimental validation for the biaxial conditions, Studia Geotechnica et Mechanica, 2017, Vol. 39, No. 1, 73-80.10.1515/sgem-2017-0007Search in Google Scholar

[34] TANG Y.X., HANZAWA H., YASUHARA K., Direct shear and direct simple shear tests results on Japanese marine clay, Pre-failure Deformation of Geomaterials. Balkema, Rotterdam 1995, 107-112.Search in Google Scholar

[35] TAYLOR D.W., Fundamentals of Soil Mechanics, John Wiley & Sons, New York 1948.10.1097/00010694-194808000-00008Search in Google Scholar

[36] TAYLOR D.W., A direct test with drainage control, Symp. on Direct Shear Testing of Soils, ASTM Special Techn. Publ., 1952, No. 131, 63-74.10.1520/STP47725SSearch in Google Scholar

[37] WIJEWICKREME D., DABEET A., BYRNE P., Some Observations on the State of Stress in the Direct Simple Shear Test Using Discrete Element Analysis, Geotechnical Testing Journal, 2013, 36, No. 2, 292-298.10.1520/GTJ20120066Search in Google Scholar

[38] WOOD D.M., Soil behaviour and critical state soil mechanics, Cambridge University Press, 1990.10.1017/CBO9781139878272Search in Google Scholar

[39] WU P.-K., MATSUSHIMA K., TATSUOKA F., Effects of Specimen Size and Some Other Factors on the Strength and Deformation of Granular Soil in Direct Shear Tests, Geotechnical Testing Journal, 2008, 31, No. 1, 45-64.10.1520/GTJ100773Search in Google Scholar

[40] YAN W.M., Particle Elongation and Deposition Effect to Macroscopic and Microscopic Responses of Numerical Direct Shear Tests, Geotechnical Testing Journal, 2010, 34, No. 3, 238-249.10.1520/GTJ102785Search in Google Scholar

eISSN:
2083-831X
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Geosciences, other, Materials Sciences, Composites, Porous Materials, Physics, Mechanics and Fluid Dynamics