Otwarty dostęp

Morphology and the physical and thermal properties of thermoplastic polyurethane reinforced with thermally reduced graphene oxide


Zacytuj

1. Stankovich, S., Dikin, D.A., Dommett G.H.B., Kohlhaas K.M., Zimney E.J. & Stach E.A., et al. (2006). Graphene-based composite materials. Nature 442, 282–286. DOI: 10.1038/nature04969.10.1038/nature04969Search in Google Scholar

2. Ray, S.S. & Okamoto, M. (2003). Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci. 28, 1539–1641. DOI: 10.1016/j.progpolymsci.2003.08.002.10.1016/j.progpolymsci.2003.08.002Search in Google Scholar

3. Leroux, F. & Besse, J.P. (2001). Polymer intercalated layered double hydroxide: a new emerging class of nanocomposites. Chem. Mater. 13, 3507–3515. DOI: 10.1021/cm0110268.10.1021/cm0110268Search in Google Scholar

4. Peng, L., Kim, N.H., Bhadra, S. & Lee, J.H. (2009). Electroresponsive property of novel poly(acrylate-acryloyloxyethyl trimethyl ammoniumchloride)/clay nanocomposite hydrogels. Adv. Mater. Res. 79, 2263–2266. DOI: 10.4028/www.scientific.net/AMR.79-82.2263.10.4028/www.scientific.net/AMR.79-82.2263Search in Google Scholar

5. Giannelis, E.P., Krishnamoorti, R. & Manias, E. (1999). Polymer-silicate nanocomposites: model systems for confined polymers and polymer brushes. Adv. Polym. Sci. 138, 107–147. DOI: 10.1007/3-540-69711-X_3.10.1007/3-540-69711-X_3Search in Google Scholar

6. Uddin, F. (2008). Clays, nanoclays, and montmorillonite minerals. Metall. Mater. Trans. A 39, 2805–2814. DOI: 10.1007/s11661-008-9603-5.10.1007/s11661-008-9603-5Search in Google Scholar

7. Zhang, W., Blackburn, R.S. & Dehghani-Sanij, A. (2007). Electrical conductivity of epoxy resin-carbon black-silica nanocomposites: effect of silica concentration and analysis of polymer curing reaction by FTIR. Scripta. Mater. 57, 949–952. DOI: 10.1016/j.scriptamat.2007.07.030.10.1016/j.scriptamat.2007.07.030Search in Google Scholar

8. Li, Q., Siddaramaiah, Kim, N.H., Yoo, G.H. & Lee, J.H. (2009). Positive temperature coefficient characteristic and structure of graphite nanofibers reinforced high-density polyethylene/carbon black nanocomposites. Compos. Part B 40, 218–224. DOI: 10.1016/j.compositesb.2008.11.002.10.1016/j.compositesb.2008.11.002Search in Google Scholar

9. Chen, X., Zheng, Y.P., Kang, F. & Shen, W.C. (2006). Preparation and structure analysis of carbon/carbon composite made from phenolic resin impregnation into exfoliated graphite. J. Phys. Chem. Solids 67, 1141–1144. DOI: 10.1016/j.jpcs.2006.01.087.10.1016/j.jpcs.2006.01.087Search in Google Scholar

10. Liao, S.H., Yen, C.Y., Weng, C.C., Lin, Y.F., Ma, C.C.M. &Yang, C.H., et al. (2008). Preparation and properties of carbon nanotube/polypropylene nanocomposite bipolar plates for polymer electrolyte membrane fuel cells. J. Power. Sources. 185, 1225–1232. DOI: 10.1016/j.jpowsour.2009.06.064.10.1016/j.jpowsour.2009.06.064Search in Google Scholar

11. Liu, N., Luo, F., Wu, H., Liu, Y., Zhang, C. & Chen, J. (2008). One step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphene. Adv. Funct. Mater. 18, 1518–1525. DOI: 10.1002/adfm.200700797.10.1002/adfm.200700797Search in Google Scholar

12. Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W. & Potts, J.R., et al. (2010). Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 22, 3906–3924. DOI: 10.1002/adma.201001068.10.1002/adma.201001068Search in Google Scholar

13. Si, Y. & Samulski, T. (2008). Synthesis of water soluble graphene. Nano. Lett. 8, 1679–1682. DOI: 10.1021/nl080604h.10.1021/nl080604hSearch in Google Scholar

14. Geim, A.K. & MacDonald, A.H. (2007). Graphene: exploring carbon flatland. Phys. Today 60(8), 35–34. DOI: 10.1063/1.2774096.10.1063/1.2774096Search in Google Scholar

15. Wang, G., Shen, X., Wang, B., Yao, J. & Park, J. (2009) Synthesis and characterization of hydrophilic and organophilic graphene nanosheets. Carbon 47, 1359–1364. DOI: 10.1016/j.carbon.2009.01.027.10.1016/j.carbon.2009.01.027Search in Google Scholar

16. Wang, G., Yang, J., Park, J., Gou, X., Wang, B. & Liu, H., et al. (2008). Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 112, 8192–8195. DOI: 10.1021/jp710931h.10.1021/jp710931hSearch in Google Scholar

17. Dreyer, R.D., Park, S., Bielawski, C.W. & Ruoff, R.S. (2010). The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240. DOI: 10.1039/b917103g.10.1039/B917103GSearch in Google Scholar

18. Wang, X., Yang, H., Song, L., Hu, Y., Xing, W. & Lu, H. (2011). Morphology, mechanical and thermal properties ofgraphene-reinforced poly(butylene succinate) nanocomposites. Compos. Sci. Technol. 72, 1–6. DOI: 10.1016/j.compscitech.2011.05.007.10.1016/j.compscitech.2011.05.007Search in Google Scholar

19. Kim, H., Abdala, A.A. & Macosko, C.W. (2010). Graphene/polymer nanocomposites. Macromolecules 43, 6515–6530. DOI: 10.1021/ma100572e.10.1021/ma100572eSearch in Google Scholar

20. Mya, K.Y., Gose, H.B., Pretsch, T., Bothe, M. & He, C. (2011). Star-shaped POSS-polycaprolactone polyurethanes and their shape memory performance. J. Mater. Chem. 21, 4827–4836. DOI: 10.1039/C0JM04459H.10.1039/c0jm04459hSearch in Google Scholar

21. Ma, W.S., Wu, L., Yang, F. & Wang, S.F. (2014). Non-covalently modified reduced graphene oxide/polyurethane nanocomposites with good mechanical and thermal properties. J. Mater. Sci. 49, 562–571. DOI: 10.1007/s10853-013-7736-4.10.1007/s10853-013-7736-4Search in Google Scholar

22. Jung, Y.C., Sahoo, N.G. & Cho, J.W. (2006). Polymeric nanocomposites of polyurethane block copolymers and functionalized multi-walled carbon nanotubes as crosslinkers. Macromol Rapid Commun. 27, 126–131. DOI: 10.1002/marc.200500658.10.1002/marc.200500658Search in Google Scholar

23. Kim, J.T., Kim, B.K., Kim, E.Y., Park, H.C. & Jeong, H.M. (2014). Synthesis and shape memory performance of polyurethane/graphene nanocomposites. Reac. Func. Polym. 74, 16–21. DOI: 10.1016/j.reactfunctpolym.2013.10.004.10.1016/j.reactfunctpolym.2013.10.004Search in Google Scholar

24. Park, J.H. & Kim, B.K. (2014). Infrared light actuated shape memory effects in crystalline polyurethane/graphene chemical hybrids. Smart Mater. Struct. 23, from http://iop-science.iop.org/0964-1726/23/2/025038, DOI: 10.1088/0964-1726/23/2/025038.10.1088/0964-1726/23/2/025038Search in Google Scholar

25. Bernal, M.M., Martin-Gallego, M., Molenberg, I., Huynen, I., López, M.A. & Verdejo, M.R. (2014). Influence of carbon nanoparticles on the polymerization and EMI shielding properties of PU nanocomposite foams. RSC Adv. 4, 7911–7918. DOI: 10.1039/C3RA45607B.10.1039/c3ra45607bSearch in Google Scholar

26. Hodlur, R.M. & Rabinal, M.K. (2014). Self assembled graphene layers on polyurethane foam as a highly pressure sensitive conducting composite. Compos. Sci. Technol. 90, 160–165. DOI: 10.1016/j.compscitech.2013.11.005.10.1016/j.compscitech.2013.11.005Search in Google Scholar

27. Allen, M.J., Tung, V.C. & Kaner, R.B. (2010). Honeycomb carbon: a review of grapheme. Chem. Rev. 110, 132–145. DOI: 10.1021/cr900070d.10.1021/cr900070dSearch in Google Scholar

28. Delebecq, E., Pascault, J.P., Boutevin, B. & Ganachaud, F. (2013). On the versatility of urethane/urea bonds: reversibility, blocked isocyanate, and non-isocyanate polyurethane. Chem. Rev. 113, 80–118. DOI: 10.1021/cr300195n.10.1021/cr300195nSearch in Google Scholar

29. Sadasivuni, K.K., Ponnamma, D., Thomas, S. & Grohens, Y. (2014). Evolution from graphite to graphene elastomer composites. Prog. Polym. Sci. 39, 749–780. DOI: 10.1016/j.progpolymsci.2013.08.003.10.1016/j.progpolymsci.2013.08.003Search in Google Scholar

30. Huang, X., Qi, X., Boey, F. & Zhang, H. (2012). Graphene-based composites. Chem. Soc. Rev. 41, 666–686. DOI: 10.1039/C1CS15078B.10.1039/C1CS15078BSearch in Google Scholar

31. Jung, Y.C., Yoo, H.J., Kim, Y.A., Cho, J.W. & Endo, M. (2010). Electroactive shape memory performance of polyurethane composite having homogeneously dispersed and covalently crosslinked carbon nanotubes, Carbon 48, 1598–1603. DOI:10.1016/j.carbon.2009.12.058.10.1016/j.carbon.2009.12.058Search in Google Scholar

32. Yadav, S.K., Mahapatra, S.S. & Cho, J.W. (2012). Synthesis of mechanically robust antimicrobial nanocomposites by click coupling of hyperbranched polyurethane and carbon nanotubes, Polymer 53, 2023–2031. DOI: 10.1016/j.polymer.2012.03.010.10.1016/j.polymer.2012.03.010Search in Google Scholar

33. Deka, H., Karak, N., Kalita, R.D. & Buragohain, A.K. (2010). Biocompatible hyperbranched polyurethane/multi-walled carbon nanotube composites as shape memory materials. Carbon 48, 2013–2022. DOI: 10.1016/j.carbon.2010.02.009.10.1016/j.carbon.2010.02.009Search in Google Scholar

34. Ma, W.S., Wu, L., Yang, F. & Wang, S.F. (2014). Non-covalently modified reduced graphene oxide/polyurethane nanocomposites with good mechanical and thermal properties. J. Mater. Sci. 49, 562–571. DOI: 10.1007/s10853-013-7736-4.10.1007/s10853-013-7736-4Search in Google Scholar

35. Cai, D., Yusoh, K. & Song, M. (2009). The mechanical properties and morphology of a graphite oxide nanoplatelet/polyurethane composite. Nanotechnology 20, from http://iop-science.iop.org/0957-4484/20/8/085712. DOI: 10.1088/0957-4484/20/8/085712.10.1088/0957-4484/20/8/085712Search in Google Scholar

36. Bernal, M.M., Molenberg, I., Estravis, S., Rodriguez-Perez, M.A., Huynen, I., Lopez-Manchado, M.A. & Verdejo, R. (2012). Comparing the effect of carbon-based nanofillers on the physical properties of flexible polyurethane foams. J. Mater. Sci. 47, 5673–5679. DOI: 10.1007/s10853-012-6331-4.10.1007/s10853-012-6331-4Search in Google Scholar

37. Mya, K.Y., Gose, H.B., Pretsch, T., Bothe, M. & He, C. (2011). Star-shaped POSS-polycaprolactone polyurethanes and their shape memory performance. J. Mater. Chem. 21, 4827–4836. DOI: 10.1039/C0JM04459H.10.1039/c0jm04459hSearch in Google Scholar

38. Park, J.H. & Kim, B.K. (2014). Infrared light actuated shape memory effects in crystalline polyurethane/graphene chemical hybrids. Smart Mater. Struct. 23, 1–7. DOI: 10.1088/0964-1726/23/2/025038.10.1088/0964-1726/23/2/025038Search in Google Scholar

39. Bernal, M.M., Molenberg, I., Estravis, S., Rodriguez-Perez, M.A., Huynen, I., Lopez-Manchado, M.A. & Verdejo, R. (2012). Comparing the effect of carbon-based nanofillers on the physical properties of flexible polyurethane foams. J. Mater. Sci. 47, 5673–5679. DOI: 10.1007/s10853-012-6331-4.10.1007/s10853-012-6331-4Search in Google Scholar

40. Hodlur, R.M. & Rabinal, M.K. (2014). Self assembled graphene layers on polyurethane foam as a highly pressure sensitive conducting composite. Compos. Sci. Technol. 90, 160–165. DOI: 10.1016/j.compscitech.2013.11.005.10.1016/j.compscitech.2013.11.005Search in Google Scholar

41. Cai, D., Yusoh, K. & Song, M. (2009). The mechanical properties and morphology of a graphite oxide nanoplatelet/polyurethane composite. Nanotechnology 20, from http://iopscience.iop.org/0957-4484/20/8/085712. DOI: 10.1088/0957-4484/20/8/085712.10.1088/0957-4484/20/8/085712Search in Google Scholar

42. Xia, H.S. & Song, M. (2005). Preparation and characterization of polyurethane–carbon nanotube Composites. Soft Matter 1(5), 386–394. DOI: 10.1039/b509038e.10.1039/b509038eSearch in Google Scholar

43. Chattopadhyay, D.K. & Webster, D.C. (2009). Thermal stability and flame retardancy of polyurethanes. Prog. Polym. Sci. 34(10), 1068–1133. DOI: 10.1016/j.progpolymsci.2009.06.002.10.1016/j.progpolymsci.2009.06.002Search in Google Scholar

44. Thirumal, M., Khastgir, D., Nando, G.B., Naik, Y.P. & Singha, N.K. (2010). Halogen-free flame retardant PUF: effect of melamine compounds on mechanical, thermal and flame retardant properties. Polym. Degrad. Stab. 95(6), 1138–1145. DOI: 10.1016/j.polymdegradstab.2010.01.035.10.1016/j.polymdegradstab.2010.01.035Search in Google Scholar

eISSN:
1899-4741
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering