Accesso libero

Morphology and the physical and thermal properties of thermoplastic polyurethane reinforced with thermally reduced graphene oxide

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Stankovich, S., Dikin, D.A., Dommett G.H.B., Kohlhaas K.M., Zimney E.J. & Stach E.A., et al. (2006). Graphene-based composite materials. Nature 442, 282–286. DOI: 10.1038/nature04969.10.1038/nature04969Search in Google Scholar

2. Ray, S.S. & Okamoto, M. (2003). Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci. 28, 1539–1641. DOI: 10.1016/j.progpolymsci.2003.08.002.10.1016/j.progpolymsci.2003.08.002Search in Google Scholar

3. Leroux, F. & Besse, J.P. (2001). Polymer intercalated layered double hydroxide: a new emerging class of nanocomposites. Chem. Mater. 13, 3507–3515. DOI: 10.1021/cm0110268.10.1021/cm0110268Search in Google Scholar

4. Peng, L., Kim, N.H., Bhadra, S. & Lee, J.H. (2009). Electroresponsive property of novel poly(acrylate-acryloyloxyethyl trimethyl ammoniumchloride)/clay nanocomposite hydrogels. Adv. Mater. Res. 79, 2263–2266. DOI: 10.4028/www.scientific.net/AMR.79-82.2263.10.4028/www.scientific.net/AMR.79-82.2263Search in Google Scholar

5. Giannelis, E.P., Krishnamoorti, R. & Manias, E. (1999). Polymer-silicate nanocomposites: model systems for confined polymers and polymer brushes. Adv. Polym. Sci. 138, 107–147. DOI: 10.1007/3-540-69711-X_3.10.1007/3-540-69711-X_3Search in Google Scholar

6. Uddin, F. (2008). Clays, nanoclays, and montmorillonite minerals. Metall. Mater. Trans. A 39, 2805–2814. DOI: 10.1007/s11661-008-9603-5.10.1007/s11661-008-9603-5Search in Google Scholar

7. Zhang, W., Blackburn, R.S. & Dehghani-Sanij, A. (2007). Electrical conductivity of epoxy resin-carbon black-silica nanocomposites: effect of silica concentration and analysis of polymer curing reaction by FTIR. Scripta. Mater. 57, 949–952. DOI: 10.1016/j.scriptamat.2007.07.030.10.1016/j.scriptamat.2007.07.030Search in Google Scholar

8. Li, Q., Siddaramaiah, Kim, N.H., Yoo, G.H. & Lee, J.H. (2009). Positive temperature coefficient characteristic and structure of graphite nanofibers reinforced high-density polyethylene/carbon black nanocomposites. Compos. Part B 40, 218–224. DOI: 10.1016/j.compositesb.2008.11.002.10.1016/j.compositesb.2008.11.002Search in Google Scholar

9. Chen, X., Zheng, Y.P., Kang, F. & Shen, W.C. (2006). Preparation and structure analysis of carbon/carbon composite made from phenolic resin impregnation into exfoliated graphite. J. Phys. Chem. Solids 67, 1141–1144. DOI: 10.1016/j.jpcs.2006.01.087.10.1016/j.jpcs.2006.01.087Search in Google Scholar

10. Liao, S.H., Yen, C.Y., Weng, C.C., Lin, Y.F., Ma, C.C.M. &Yang, C.H., et al. (2008). Preparation and properties of carbon nanotube/polypropylene nanocomposite bipolar plates for polymer electrolyte membrane fuel cells. J. Power. Sources. 185, 1225–1232. DOI: 10.1016/j.jpowsour.2009.06.064.10.1016/j.jpowsour.2009.06.064Search in Google Scholar

11. Liu, N., Luo, F., Wu, H., Liu, Y., Zhang, C. & Chen, J. (2008). One step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphene. Adv. Funct. Mater. 18, 1518–1525. DOI: 10.1002/adfm.200700797.10.1002/adfm.200700797Search in Google Scholar

12. Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W. & Potts, J.R., et al. (2010). Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 22, 3906–3924. DOI: 10.1002/adma.201001068.10.1002/adma.201001068Search in Google Scholar

13. Si, Y. & Samulski, T. (2008). Synthesis of water soluble graphene. Nano. Lett. 8, 1679–1682. DOI: 10.1021/nl080604h.10.1021/nl080604hSearch in Google Scholar

14. Geim, A.K. & MacDonald, A.H. (2007). Graphene: exploring carbon flatland. Phys. Today 60(8), 35–34. DOI: 10.1063/1.2774096.10.1063/1.2774096Search in Google Scholar

15. Wang, G., Shen, X., Wang, B., Yao, J. & Park, J. (2009) Synthesis and characterization of hydrophilic and organophilic graphene nanosheets. Carbon 47, 1359–1364. DOI: 10.1016/j.carbon.2009.01.027.10.1016/j.carbon.2009.01.027Search in Google Scholar

16. Wang, G., Yang, J., Park, J., Gou, X., Wang, B. & Liu, H., et al. (2008). Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 112, 8192–8195. DOI: 10.1021/jp710931h.10.1021/jp710931hSearch in Google Scholar

17. Dreyer, R.D., Park, S., Bielawski, C.W. & Ruoff, R.S. (2010). The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240. DOI: 10.1039/b917103g.10.1039/B917103GSearch in Google Scholar

18. Wang, X., Yang, H., Song, L., Hu, Y., Xing, W. & Lu, H. (2011). Morphology, mechanical and thermal properties ofgraphene-reinforced poly(butylene succinate) nanocomposites. Compos. Sci. Technol. 72, 1–6. DOI: 10.1016/j.compscitech.2011.05.007.10.1016/j.compscitech.2011.05.007Search in Google Scholar

19. Kim, H., Abdala, A.A. & Macosko, C.W. (2010). Graphene/polymer nanocomposites. Macromolecules 43, 6515–6530. DOI: 10.1021/ma100572e.10.1021/ma100572eSearch in Google Scholar

20. Mya, K.Y., Gose, H.B., Pretsch, T., Bothe, M. & He, C. (2011). Star-shaped POSS-polycaprolactone polyurethanes and their shape memory performance. J. Mater. Chem. 21, 4827–4836. DOI: 10.1039/C0JM04459H.10.1039/c0jm04459hSearch in Google Scholar

21. Ma, W.S., Wu, L., Yang, F. & Wang, S.F. (2014). Non-covalently modified reduced graphene oxide/polyurethane nanocomposites with good mechanical and thermal properties. J. Mater. Sci. 49, 562–571. DOI: 10.1007/s10853-013-7736-4.10.1007/s10853-013-7736-4Search in Google Scholar

22. Jung, Y.C., Sahoo, N.G. & Cho, J.W. (2006). Polymeric nanocomposites of polyurethane block copolymers and functionalized multi-walled carbon nanotubes as crosslinkers. Macromol Rapid Commun. 27, 126–131. DOI: 10.1002/marc.200500658.10.1002/marc.200500658Search in Google Scholar

23. Kim, J.T., Kim, B.K., Kim, E.Y., Park, H.C. & Jeong, H.M. (2014). Synthesis and shape memory performance of polyurethane/graphene nanocomposites. Reac. Func. Polym. 74, 16–21. DOI: 10.1016/j.reactfunctpolym.2013.10.004.10.1016/j.reactfunctpolym.2013.10.004Search in Google Scholar

24. Park, J.H. & Kim, B.K. (2014). Infrared light actuated shape memory effects in crystalline polyurethane/graphene chemical hybrids. Smart Mater. Struct. 23, from http://iop-science.iop.org/0964-1726/23/2/025038, DOI: 10.1088/0964-1726/23/2/025038.10.1088/0964-1726/23/2/025038Search in Google Scholar

25. Bernal, M.M., Martin-Gallego, M., Molenberg, I., Huynen, I., López, M.A. & Verdejo, M.R. (2014). Influence of carbon nanoparticles on the polymerization and EMI shielding properties of PU nanocomposite foams. RSC Adv. 4, 7911–7918. DOI: 10.1039/C3RA45607B.10.1039/c3ra45607bSearch in Google Scholar

26. Hodlur, R.M. & Rabinal, M.K. (2014). Self assembled graphene layers on polyurethane foam as a highly pressure sensitive conducting composite. Compos. Sci. Technol. 90, 160–165. DOI: 10.1016/j.compscitech.2013.11.005.10.1016/j.compscitech.2013.11.005Search in Google Scholar

27. Allen, M.J., Tung, V.C. & Kaner, R.B. (2010). Honeycomb carbon: a review of grapheme. Chem. Rev. 110, 132–145. DOI: 10.1021/cr900070d.10.1021/cr900070dSearch in Google Scholar

28. Delebecq, E., Pascault, J.P., Boutevin, B. & Ganachaud, F. (2013). On the versatility of urethane/urea bonds: reversibility, blocked isocyanate, and non-isocyanate polyurethane. Chem. Rev. 113, 80–118. DOI: 10.1021/cr300195n.10.1021/cr300195nSearch in Google Scholar

29. Sadasivuni, K.K., Ponnamma, D., Thomas, S. & Grohens, Y. (2014). Evolution from graphite to graphene elastomer composites. Prog. Polym. Sci. 39, 749–780. DOI: 10.1016/j.progpolymsci.2013.08.003.10.1016/j.progpolymsci.2013.08.003Search in Google Scholar

30. Huang, X., Qi, X., Boey, F. & Zhang, H. (2012). Graphene-based composites. Chem. Soc. Rev. 41, 666–686. DOI: 10.1039/C1CS15078B.10.1039/C1CS15078BSearch in Google Scholar

31. Jung, Y.C., Yoo, H.J., Kim, Y.A., Cho, J.W. & Endo, M. (2010). Electroactive shape memory performance of polyurethane composite having homogeneously dispersed and covalently crosslinked carbon nanotubes, Carbon 48, 1598–1603. DOI:10.1016/j.carbon.2009.12.058.10.1016/j.carbon.2009.12.058Search in Google Scholar

32. Yadav, S.K., Mahapatra, S.S. & Cho, J.W. (2012). Synthesis of mechanically robust antimicrobial nanocomposites by click coupling of hyperbranched polyurethane and carbon nanotubes, Polymer 53, 2023–2031. DOI: 10.1016/j.polymer.2012.03.010.10.1016/j.polymer.2012.03.010Search in Google Scholar

33. Deka, H., Karak, N., Kalita, R.D. & Buragohain, A.K. (2010). Biocompatible hyperbranched polyurethane/multi-walled carbon nanotube composites as shape memory materials. Carbon 48, 2013–2022. DOI: 10.1016/j.carbon.2010.02.009.10.1016/j.carbon.2010.02.009Search in Google Scholar

34. Ma, W.S., Wu, L., Yang, F. & Wang, S.F. (2014). Non-covalently modified reduced graphene oxide/polyurethane nanocomposites with good mechanical and thermal properties. J. Mater. Sci. 49, 562–571. DOI: 10.1007/s10853-013-7736-4.10.1007/s10853-013-7736-4Search in Google Scholar

35. Cai, D., Yusoh, K. & Song, M. (2009). The mechanical properties and morphology of a graphite oxide nanoplatelet/polyurethane composite. Nanotechnology 20, from http://iop-science.iop.org/0957-4484/20/8/085712. DOI: 10.1088/0957-4484/20/8/085712.10.1088/0957-4484/20/8/085712Search in Google Scholar

36. Bernal, M.M., Molenberg, I., Estravis, S., Rodriguez-Perez, M.A., Huynen, I., Lopez-Manchado, M.A. & Verdejo, R. (2012). Comparing the effect of carbon-based nanofillers on the physical properties of flexible polyurethane foams. J. Mater. Sci. 47, 5673–5679. DOI: 10.1007/s10853-012-6331-4.10.1007/s10853-012-6331-4Search in Google Scholar

37. Mya, K.Y., Gose, H.B., Pretsch, T., Bothe, M. & He, C. (2011). Star-shaped POSS-polycaprolactone polyurethanes and their shape memory performance. J. Mater. Chem. 21, 4827–4836. DOI: 10.1039/C0JM04459H.10.1039/c0jm04459hSearch in Google Scholar

38. Park, J.H. & Kim, B.K. (2014). Infrared light actuated shape memory effects in crystalline polyurethane/graphene chemical hybrids. Smart Mater. Struct. 23, 1–7. DOI: 10.1088/0964-1726/23/2/025038.10.1088/0964-1726/23/2/025038Search in Google Scholar

39. Bernal, M.M., Molenberg, I., Estravis, S., Rodriguez-Perez, M.A., Huynen, I., Lopez-Manchado, M.A. & Verdejo, R. (2012). Comparing the effect of carbon-based nanofillers on the physical properties of flexible polyurethane foams. J. Mater. Sci. 47, 5673–5679. DOI: 10.1007/s10853-012-6331-4.10.1007/s10853-012-6331-4Search in Google Scholar

40. Hodlur, R.M. & Rabinal, M.K. (2014). Self assembled graphene layers on polyurethane foam as a highly pressure sensitive conducting composite. Compos. Sci. Technol. 90, 160–165. DOI: 10.1016/j.compscitech.2013.11.005.10.1016/j.compscitech.2013.11.005Search in Google Scholar

41. Cai, D., Yusoh, K. & Song, M. (2009). The mechanical properties and morphology of a graphite oxide nanoplatelet/polyurethane composite. Nanotechnology 20, from http://iopscience.iop.org/0957-4484/20/8/085712. DOI: 10.1088/0957-4484/20/8/085712.10.1088/0957-4484/20/8/085712Search in Google Scholar

42. Xia, H.S. & Song, M. (2005). Preparation and characterization of polyurethane–carbon nanotube Composites. Soft Matter 1(5), 386–394. DOI: 10.1039/b509038e.10.1039/b509038eSearch in Google Scholar

43. Chattopadhyay, D.K. & Webster, D.C. (2009). Thermal stability and flame retardancy of polyurethanes. Prog. Polym. Sci. 34(10), 1068–1133. DOI: 10.1016/j.progpolymsci.2009.06.002.10.1016/j.progpolymsci.2009.06.002Search in Google Scholar

44. Thirumal, M., Khastgir, D., Nando, G.B., Naik, Y.P. & Singha, N.K. (2010). Halogen-free flame retardant PUF: effect of melamine compounds on mechanical, thermal and flame retardant properties. Polym. Degrad. Stab. 95(6), 1138–1145. DOI: 10.1016/j.polymdegradstab.2010.01.035.10.1016/j.polymdegradstab.2010.01.035Search in Google Scholar

eISSN:
1899-4741
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering