1. bookTom 27 (2016): Zeszyt 1 (January 2016)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2719-9509
Pierwsze wydanie
01 Jan 1992
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
Otwarty dostęp

Analysis of Cigarette Smoke Deposition Within an In Vitro Exposure System for Simulating Exposure in the Human Respiratory Tract

Data publikacji: 03 Feb 2016
Tom & Zeszyt: Tom 27 (2016) - Zeszyt 1 (January 2016)
Zakres stron: 20 - 29
Otrzymano: 06 May 2015
Przyjęty: 15 Dec 2015
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2719-9509
Pierwsze wydanie
01 Jan 1992
Częstotliwość wydawania
4 razy w roku
Języki
Angielski

1. Church, D.F. and W.A. Pryor: Free-Radical Chemistry of Cigarette Smoke and its Toxicological Implications; Environ. Health Persp. 64 (1985) 111-126.Search in Google Scholar

2. Hoffmann, D. and E.L. Wynder: Chemical Constituents and Bioactivity of Tobacco Smoke; in: Tobacco: A Major Health Hazard, edited by D.G. Zardidze and R. Peto, IARC, Lyon, France, IARC Sci. Publ. No. 74 (1986) 145-165.Search in Google Scholar

3. Rodgman, A. and T.A. Perfetti: The Chemical Components of Tobacco and Tobacco Smoke, Second Edition; CRC press, Boca Raton, FL, USA, 2013.Search in Google Scholar

4. Mizusaki, S., T. Takashima, and K. Tomaru: Factors Affecting Mutagenic Activity of Cigarette Smoke Condensate in Salmonella Typhimurium TA 1538; Mutat. Res. 48 (1977) 29-36.Search in Google Scholar

5. Nakayama, T., M. Kaneko, M. Kodama, and C.Search in Google Scholar

Nagata: Cigarette Smoke Induces DNA Singlestrand Breaks in Human Cells; Nature 314 (1985) 462-464.Search in Google Scholar

6. Andreoli, C., D. Gigante, and A. Nunziata: A Review of In Vitro Methods to Assess the Biological Activity of Tobacco Smoke With the Aim of Reducing the Toxicology of Smoke; Toxicol. In Vitro 17 (2003) 587-594Search in Google Scholar

7. Thorne, D. and J. Adamson: A Review of In Vitro Cigarette Smoke Exposure Systems; Exp. Toxicol. Pathol. 65 (2013) 1183-1193.Search in Google Scholar

8. Nara, H., Y. Fukano, T. Nishino, and M. Aufderheide: Detection of the Cytotoxicity of Water-Insoluble Fraction of Cigarette Smoke by Direct Exposure to Cultured Cells at an Air-Liquid Interface; Exp. Toxicol. Pathol. 65 (2013) 683-688.Search in Google Scholar

9. Fukano, Y., M. Ogura, K. Eguchi, M. Shibagaki, and M. Suzuki: Modified Procedure of a Direct In Vitro Exposure System for Mammalian Cells to Whole Cigarette Smoke; Exp. Toxicol. Pathol. 55 (2004) 317-323.Search in Google Scholar

10. Maunders, H., S. Patwardhan, J. Phillips, A. Clack, and A. Richter: Human Bronchial Epithelial Cell Transcriptome: Gene Expression Changes Following Acute Exposure to Whole Cigarette Smoke In Vitro; Am. J. Physiol. Lung Cell Mol. Physiol. 292 (2007) 1248-1256.Search in Google Scholar

11. Aufderheide, M. and H. Gressmann: Mutagenicity of Native Cigarette Mainstream Smoke and its Gas Vapour Phase by Use of Different Tester Strains and Cigarettes in a Modified Ames Assay; Mutat. Res. 656 (2008) 82-87.Search in Google Scholar

12. Scian, M.J., M.J. Oldham, D.B. Kane, J.S. Edmiston, and W.J. McKinney: Characterization of a Whole Smoke In Vitro Exposure System (Burghart Mimic Smoker-01); Inhal. Toxicol. 21 (2009) 234-243.Search in Google Scholar

13. Paur, H.R., F.R. Cassee, J. Teeguarden, H. Fissan, S. Diabate, M. Aufderheide, W.G. Kreyling, O. Hänninen, G. Kasper, M. Riediker, B. Rothen- Rutishauser, and O. Schmid: In-Vitro Cell Exposure Studies for the Assessment of Nanoparticle Toxicity in the Lung-A Dialog Between Aerosol Science and Biology; J. Aerosol Sci. 42 (2011) 668-692.Search in Google Scholar

14. Okuwa, K., M. Tanaka, Y. Fukano, H. Nara, Y. Nishijima, and T. Nishino: In Vitro Micronucleus Assay for Cigarette Smoke Using a Whole Smoke Exposure System: A Comparison of Smoking Regimens; Exp. Toxicol. Pathol. 62 (2010) 433-440.Search in Google Scholar

15. Weber, S., M. Hebestreit, T. Wilms, L.L. Conroy, and G. Rodrigo: Comet Assay and Air-Liquid Interface Exposure System: A New Combination to Evaluate Genotoxic Effects of Cigarette Whole Smoke in Human Lung Cell Lines; Toxicol. In Vitro 27 (2013) 1987-1991.Search in Google Scholar

16. Thorne, D., J. Kilford, R. Payne, J. Adamson, K. Scott, A. Dalrymple, C. Meredith, and D. Dillon: Characterisation of a Vitrocell® VC 10 In Vitro Smoke Exposure System Using Dose Tools and Biological Analysis; Chem. Cent. J. 7 (2013) 146.Search in Google Scholar

17. Adamson, J., S. Hughes, D. Azzopardi, J. McAughey, and M.D. Gaça: Real-Time Assessment of Cigarette Smoke Particle Deposition In Vitro; Chem. Cent. J. 6 (2012) 98.Search in Google Scholar

18. Aufderheide, M., S. Scheffler, N. Möhle, B. Halter, and D. Hochrainer: Analytical In Vitro Approach for Studying Cyto- and Genotoxic Effects of Particulate Airborne Material; Anal. Bioanal. Chem. 401 (2011) 3213-3220.Search in Google Scholar

19. Steinritz, D., N. Möhle, C. Pohl, M. Papritz, B. Stenger, A. Schmidt, C.J. Kirkpatrick, H. Thiermann, R. Vogel, S. Hoffmann, and M. Aufderheide: Use of the Cultex® Radial Flow System as an In Vitro Exposure Method to Assess Acute Pulmonary Toxicity of Fine Dusts and Nanoparticles With Special Focus on the Intra- and Inter-Laboratory Reproducibility; Chem. Biol. Interact. 206 (2013) 479-490.Search in Google Scholar

20. Aufderheide, M., B. Halter, N. Möhle, and D. Hochrainer: The CULTEX RFS: A Comprehensive Technical Approach for the In Vitro Exposure of Airway Epithelial Cells to the Particulate Matter at the Air-Liquid Interface; Biomed Res. Int. (2013) DOI: 10.1155/2013/734137 Epub 2013 Feb 7.10.1155/2013/734137358113323509768Search in Google Scholar

21. Tang, H., G. Richards, C.L. Benner, J.P. Tuominen, M.L. Lee, E.A. Lewis, L.D. Hansen, and D.J. Eatough: Solanesol: A Tracer for Environmental Tobacco Smoke Particles; Environ. Sci. Technol. 24 (1990) 848-852.Search in Google Scholar

22. Benowitz, N.L.: Biomarkers of Environmental Tobacco Smoke Exposure; Environ. Health Perspect. 107 Suppl. 2 (1999) 349-355.Search in Google Scholar

23. Pankow, J.F.: A Consideration of the Role of Gas/ Particle Partitioning in the Deposition of Nicotine and Other Tobacco Smoke Compounds in the Respiratory Tract; Chem. Res. Toxicol. 14 (2001) 1465-1481.Search in Google Scholar

24. Baker, R.R.: The Generation of Formaldehyde in Cigarettes -- Overview and Recent Experiments; Food Chem. Toxicol. 44 (2006) 1799-1822.Search in Google Scholar

25. Adam, T., J. McAughey, C. McGrath, C. Mocker, and R. Zimmermann: Simultaneous On-Line Size and Chemical Analysis of Gas Phase and Particulate Phase of Cigarette Mainstream Smoke; Anal. Bioanal. Chem. 394 (2009) 1193-1203.Search in Google Scholar

26. Baker, R.R. and M. Dixon: The Retention of Tobacco Smoke Constituents in the Human Respiratory Tract; Inhal. Toxicol. 18 (2006) 255-294.Search in Google Scholar

27. International Organization for Standadarzation (ISO): ISO 3308:2012 - Routine Analytical Cigarette-Smoking Machine -- Definitions and Standard Conditions; ISO, Geneva, Switzerland, 2012.Search in Google Scholar

28. Health Canada: Official Method T-115 - Determination of “Tar”, Water, Nicotine and Carbon Monoxide in Mainstream Tobacco Smoke; Health Canada, Ottawa, Canada, 1999.Search in Google Scholar

29. Armitage, A.K., M. Dixon, B.E. Frost, D.C. Mariner, and N.M. Sinclair: The Effect of Tobacco Blend Additives on the Retention of Nicotine and Solanesol in the Human Respiratory Tract and on Subsequent Plasma Nicotine Concentrations During Cigarette Smoking; Chem. Res. Toxicol. 17 (2004) 537-544.Search in Google Scholar

30. Armitage, A.K., M. Dixon, B.E. Frost, D.C. Mariner, and N.M. Sinclair: The Effect of Inhalation Volume and Breath-Hold Duration on the Retention of Nicotine and Solanesol in the Human Respiratory Tract and on Subsequent Plasma Nicotine Concentrations During Cigarette Smoking; Beitr. Tabakforsch. Int. 21 (2004) 240-249.Search in Google Scholar

31. Watson, C., J. McCraw, G. Polzin, D. Ashley, and D. Barr: Development of a Method to Assess Cigarette Smoke Intake; Environ. Sci. Technol. 38 (2004) 248-253.Search in Google Scholar

32. Feng, S., S.E. Plunkett, K. Lam, S. Kapur, R. Muhammad, Y. Jin, M. Zimmermann, P. Mendes, R. Kinser, and H.J. Roethig: A New Method for Estimating the Retention of Selected Smoke Constituents in the Respiratory Tract of Smokers During Cigarette Smoking; Inhal. Toxicol. 19 (2007) 169-179.Search in Google Scholar

33. West, J.B.: Respiratory Physiology: The Essentials; Lippincott Williams & Wilkins, Philadelphia, USA, 2012.Search in Google Scholar

34. Cooperation Center for Scientific Research Relative to Tobacco (CORESTA): CORESTA Recommended Method No 52: Environmental Tobacco Smoke - Estimation of its Contribution to Respirable Suspended Particles - Method Based on Solanesol Determination; Cooperation Centre for Scientific Research Relative to Tobacco, (2002) available at: http://www.coresta.org/Recommended_Methods/CRMs.htm (accessed January 2016).Search in Google Scholar

35. Moldoveanu, S.C., W. Coleman III, and J. Wilkins: Determination of Carbonyl Compounds in Exhaled Cigarette Smoke; Beitr. Tabakforsch. Int. 22 (2007) 346-357.Search in Google Scholar

36. International Commission on Radiological Protection (ICPR): ICRP Publication 66: Human Respiratory Tract Model for Radiological Protection; Elsevier Health Sciences, 1994.Search in Google Scholar

37. Majeed, S., S. Frentzel, S. Wagner, D. Kuehn, P. Leroy, P.A. Guy, A. Knorr, J. Hoeng, and M.C. Peitsch: Characterization of the Vitrocell® 24/48 In Vitro Aerosol Exposure System Using Mainstream Cigarette Smoke; Chem. Cent. J. 8 (2014) 62 available at: http://www.http://journal.chemistrycentral.com/content/8/1/62 (accessed January 2016).10.1186/s13065-014-0062-3423645825411580Search in Google Scholar

38. Zhang, Z., C. Kleinstreuer, and Y. Feng: Vapor Deposition During Cigarette Smoke Inhalation in a Subject-Specific Human Airway Model; J. Aerosol Sci. 53 (2012) 40-60.Search in Google Scholar

39. Rostami, A.A.: Computational Modeling of Aerosol Deposition in Respiratory Tract: A Review; Inhal. Toxicol. 21 (2009) 262-290.Search in Google Scholar

40. Martonen, T.B. and C.J. Musante: Importance of Cloud Motion on Cigarette Smoke Deposition in the Lung; Inhal. Toxicol. 12 (2000) 261-280.Search in Google Scholar

41. Zhang, Z., C. Kleinstreuer, and S. Hyun: Size-Change and Deposition of Conventional and Composite Cigarette Smoke Particles During Inhalation in a Subject-Specific Airway Model; J. Aerosol Sci. 46 (2012) 34-52.Search in Google Scholar

42. Mathis, C., C. Poussin, D. Weisensee, S. Gebel, A. Hengstermann, A. Sewer, V. Belcastro, Y. Xiang, S. Ansari, S. Wagner, J. Hoeng, and M.C. Peitsch: Human Bronchial Epithelial Cells Exposed In Vitro to Cigarette Smoke at the Air-Liquid Interface Resemble Bronchial Epithelium From Human Smokers; Am. J. Physiol. Lung Cell Mol. Physiol. 304 (2013) 489-503.Search in Google Scholar

43. Iskandar, A.R., F. Martin, M. Talikka, W.K. Schlage, R. Kostadinova, C. Mathis, J. Hoeng, and M.C. Peitsch: Systems Approaches Evaluating the Perturbation of Xenobiotic Metabolism in Response to Cigarette Smoke Exposure in Nasal and Bronchial Tissues; Biomed Res. Int. 2013 (2013) available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3808713/ (accessed January 2013)10.1155/2013/512086380871324224167Search in Google Scholar

44. Fukano, Y., H. Yoshimura, and T. Yoshida: Heme Oxygenase-1 Gene Expression in Human Alveolar Epithelial Cells (A549) Following Exposure to Whole Cigarette Smoke on a Direct In Vitro Exposure System; Exp. Toxicol. Pathol. 57 (2006) 411-418. Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo