Otwarty dostęp

Some vector inequalities for two operators in Hilbert spaces with applications

  
02 sie 2016

Zacytuj
Pobierz okładkę

In this paper we establish some vector inequalities for two operators related to Schwarz and Buzano results. We show amongst others that in a Hilbert space H we have the inequality 12[|A|2+|B|22x,x1/2|A|2+|B|22y,y1/2+||A|2+|B|22x,y|]|Re(B*A)x,y|$${1 \over 2}\left[ {\left\langle {{{\left| {\rm{A}} \right|^2 + \left| {\rm{B}} \right|^2 } \over 2}{\rm{x}},{\rm{x}}} \right\rangle ^{1/2} \left\langle {{{\left| {\rm{A}} \right|^2 + \left| {\rm{B}} \right|^2 } \over 2}{\rm{y}},{\rm{y}}} \right\rangle ^{1/2} + \left| {\left\langle {{{\left| {\rm{A}} \right|^2 + \left| {\rm{B}} \right|^2 } \over {\rm{2}}}} {\rm{x}},{\rm{y}}\right\rangle } \right|} \right] \ge \left| {\left\langle {{\mathop{\rm Re}\nolimits} ({\rm{B}}*{\rm{A}})\,{\rm{x}},{\rm{y}}} \right\rangle } \right|$$ for A, B two bounded linear operators on H such that Re (B*A) is a nonnegative operator and any vectors x, yH.

Applications for norm and numerical radius inequalities are given as well.

Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Matematyka, Matematyka ogólna