Accès libre

Some vector inequalities for two operators in Hilbert spaces with applications

  
02 août 2016
À propos de cet article

Citez
Télécharger la couverture

In this paper we establish some vector inequalities for two operators related to Schwarz and Buzano results. We show amongst others that in a Hilbert space H we have the inequality 12[|A|2+|B|22x,x1/2|A|2+|B|22y,y1/2+||A|2+|B|22x,y|]|Re(B*A)x,y|$${1 \over 2}\left[ {\left\langle {{{\left| {\rm{A}} \right|^2 + \left| {\rm{B}} \right|^2 } \over 2}{\rm{x}},{\rm{x}}} \right\rangle ^{1/2} \left\langle {{{\left| {\rm{A}} \right|^2 + \left| {\rm{B}} \right|^2 } \over 2}{\rm{y}},{\rm{y}}} \right\rangle ^{1/2} + \left| {\left\langle {{{\left| {\rm{A}} \right|^2 + \left| {\rm{B}} \right|^2 } \over {\rm{2}}}} {\rm{x}},{\rm{y}}\right\rangle } \right|} \right] \ge \left| {\left\langle {{\mathop{\rm Re}\nolimits} ({\rm{B}}*{\rm{A}})\,{\rm{x}},{\rm{y}}} \right\rangle } \right|$$ for A, B two bounded linear operators on H such that Re (B*A) is a nonnegative operator and any vectors x, yH.

Applications for norm and numerical radius inequalities are given as well.

Langue:
Anglais
Périodicité:
2 fois par an
Sujets de la revue:
Mathématiques, Mathématiques générales