Zacytuj

[1] Berg, S., Nyberg, T., Blom, H.-O., and Nender, C., “Computer modeling as a tool to predict deposition rate and film composition in the reactive sputtering process”, J. Vac. Sci. Technol. A 16(3)., May/Jun 1998, pp. 1277-1285.10.1116/1.581274Search in Google Scholar

[2] Berg, S., Nender, C., „Modeling of Mass Transport and Gas Kinetics of the Reactive Sputtering Process”, Journal de Physique IV, Colloque C5, supplément au Journal de Physique II, Volume 5, juin 1995, pp. 45-54.10.1051/jphyscol:1995502Search in Google Scholar

[3] Berg, S., Katardijev, I. V., „Preferential sputtering effects in thin film processing”, J. Vac. Sci. Technol. A 17(4)., Jul/Aug 1999, pp. 1916-1925.10.1116/1.581704Search in Google Scholar

[4] Jonsson, L. B., Nyberg, T., and Berg, S., “Target compound layer formation during reactive sputtering”, J. Vac. Sci. Technol. A 17(4), Jul/Aug 1999, pp. 1827-1831.10.1116/1.581898Search in Google Scholar

[5] Güttler, D., Abendroth, B., Grötzschel, R., Möller, W., and Depla, D., „Mechanisms of target poisoning during magnetron sputtering as investigated by real-time in situ analysis and collisional computer simulation”, Dept. Solid State Sciences, Univ. of Ghent, Annual Report IIM 2004, FZR-427, pp. 34-37.Search in Google Scholar

[6] Kubart, T., Polcar, T., Kappertz, O., Parreira, N., Nyberg, T., Berg, S., and Cavaleiro, A., „Modelling of magnetron sputtering of Tungsten Oxide with reactive gas pulsing”, Plasma Processes and Polymers, 2007, 4, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, pp. S522–S526, DOI: 10.1002/ppap.200731301.10.1002/ppap.200731301Search in Google Scholar

[7] Görgy, K., „Cercetări privind dezvoltarea unor electrotehnologii pentru depunerea straturilor metalice subţiri”, Teză de doctorat, Universitatea Tehnică din Cluj-Napoca, 2010.Search in Google Scholar

[8] Christie D., J., „Making magnetron sputtering work: Modelling reactive sputtering dynamics, Part 1”, SVC Bulletin, Fall 2014, pp. 24-27.Search in Google Scholar

[9] Christie D., J., „Making magnetron sputtering work: Modelling reactive sputtering dynamics, Part 2”, SVC Bulletin, Spring 2015, pp. 30-33.Search in Google Scholar

[10] Christie D., J., „Making magnetron sputtering work: Modelling reactive sputtering dynamics, Part 3”, SVC Bulletin, Summer 2015, pp. 38-41.Search in Google Scholar

[11] Carlsson, P., Nender, C., Barankova, H., and Berg, S., „Reactive sputtering using two reactive gases, experiments and computer modeling”, J. Vac. Sci. Technol. A 11(4), Jul/Aug 1993, pp. 1534-1539.10.1116/1.578501Search in Google Scholar

[12] Sproul, W. D., Christie, D. J., Carter, D. C., Berg, S., and Nyberg, T., „Control of the reactive sputtering process using two reactive gases”, 46’th Annual Technical Conference Proceedings, Society of Vacuum Coaters, 2003, pp. 98-103.Search in Google Scholar

[13] Carter, D. C., Sproul, W. D., and Christie, D. J., „Effective closed-loop control for reactive sputtering using two reactive gases”, 47’th Annual Technical Conference Proceedings, Society of Vacuum Coaters, 2004, pp. 37-43.Search in Google Scholar

[14] Kubart, T., Trinh, D. H., Liljeholm, L., Hultman, L., Högberg, H., Nyberg, T., and Berg, S., „Experiments and modeling of dual reactive magnetron sputtering using two reactive gases”, J. Vac. Sci. Technol. A 26(4), Jul/Aug 2008, pp. 565-570.10.1116/1.2913582Search in Google Scholar

[15] Papp, S., “Optimizarea controlului automat al pulverizării catodice în procesul de obţinere a straturilor subţiri”, Teză de doctorat, Universitatea Transilvania din Braşov, 2012.Search in Google Scholar