1. bookTom 22 (2018): Zeszyt 3 (September 2018)
Informacje o czasopiśmie
Pierwsze wydanie
12 Mar 2016
Częstotliwość wydawania
1 raz w roku
Otwarty dostęp

Concepts and Methods of Mathematic Modelling of Plant Growth and Development. Plant Germination -Part I

Data publikacji: 16 Oct 2018
Tom & Zeszyt: Tom 22 (2018) - Zeszyt 3 (September 2018)
Zakres stron: 11 - 20
Otrzymano: 01 Jun 2018
Przyjęty: 01 Sep 2018
Informacje o czasopiśmie
Pierwsze wydanie
12 Mar 2016
Częstotliwość wydawania
1 raz w roku

Aggarwal, P.K. (1993). Agro-ecological zoning using crop growth simulation models: characterization of wheat environments in India. F.W.T. Penning de Vries, P. Teng, K. Metselaar (Eds.), Systems approaches for sustainable agricultural development, Kluwer Academic Publishers, Dordrecht, The Netherlis, 97-109.Search in Google Scholar

Allen, P.S. (2003). When i how many? Hydrothermal models and the prediction of seed germination. New Phytologist 158, 1-9.10.1046/j.1469-8137.2003.00729.xSearch in Google Scholar

Alvarado, V, Bradford, K.J. (2002). A hydrothermal time model explains the cardinal temperatures for seed germination. Plant, Cell & Environment 25, 1061-1069.10.1046/j.1365-3040.2002.00894.xSearch in Google Scholar

Baskin, C.C, Baskin, J.M. (1998). Seeds – ecology, biogeography, and evolution of dormancy and germination. San Diego, CA, USA: Academic Press.Search in Google Scholar

Batlla, D, Kruk, BC, Benech-Arnold, RL. (2004). Modelling changes in dormancy in weed soil seed banks: Implications for the prediction of weed emergence. In: Benech-Arnold RL, Sanchez RA, eds. Hibook of seed physiology: applications to agriculture. New York, NY, USA: Food Product Press i the Haworth Reference Press, 245-270.Search in Google Scholar

Bauer, M.C., Meyer, S.E., Allen, P.S. (1998). A simulation model to predict seed dormancy loss in the field for Bromus tectorum L. Journal of Experimental Botany 49, 1235-1244.Search in Google Scholar

Benech Arnold, R.L., Ghersa, C.M., Sanchez, R.A., Insausti, P. (1990). A mathematical model to predict Sorghum halepense (L.) Pers. seedling emergence in relation to soil temperature. Weed Research, 30, 91-99.10.1111/j.1365-3180.1990.tb01691.xSearch in Google Scholar

Berry, G.J., Cawood, R.J., Flood, R.G. (1988). Curve fitting of germination data using the Richards function. Plant, Cell & Environment, 11, 183–188.10.1111/j.1365-3040.1988.tb01135.xSearch in Google Scholar

Bewley, J.D., Black, M. (1994). Seeds. Germination, Structure, and Composition. Springer Science+ Business Media, LLC, New York.Search in Google Scholar

Białobrzeski, I., Markowski, M., Bowszys, J., Myhan, R. (2005). Symulacyjny model zmian pola temperatury w silosie zbożowym. Inżynieria Rolnicza, 8(68), 23-30.Search in Google Scholar

Birch, C.P.D. (1999). A New Generalized Logistic Sigmoid Growth Equation Compared with the Richards Growth Equation. Annals of Botany, 83, 713-723.10.1006/anbo.1999.0877Search in Google Scholar

Boniecki, P., Niżewski, P. (2010). Modelowanie neuronowe w rozwiązywaniu wybranych problemów predykcyjnych inżynierii rolniczej. Journal of Research i Applications in Agricultural Engineering, 55(1), 16-19.Search in Google Scholar

Bradford, K.J., (1995). Water relations in seed germination. In: Kigel, J., Galili, G. (Eds.), Seed Development i Germination. Marcel Dekker, New York, pp. 351-396.Search in Google Scholar

Cieśla A., Kraszewski, W., Skowron, M., Syrek P. (2015). Wpływ działania pola magnetycznego na kiełkowanie nasion. Przegląd Elektrotechniczny, 91(1), 125-128Search in Google Scholar

Daws, M.I., Crabtree, L.M., Dalling, J.W., Mullins, C.E., Burslem, D. (2008). Germination responses to water potential in neotropical pioneers suggest large-seeded species take more risks. Annals of Botany 102, 945-951.10.1093/aob/mcn186271240318840874Search in Google Scholar

De Wit, C.T. (1982). Simulation of living systems. In Simulation of plant growth and crop production, ed. F. W. T. Penning de Vries & H. H. van Laar. Simulation Monographs, PUDOC, Wageningen, The Netherlis. pp. 3-8.Search in Google Scholar

Dingkuhn, M., Penning De Vries, F.W.T., Miezan, K.M. (1993). Improvement of rice plant type concepts: systems research enables interaction of physiology i breeding. In: Penning de Vries F., Teng P., Metselaar K. (eds) Systems approaches for agricultural development. Systems Approaches for Sustainable Agricultural Development, vol 2. Springer, DordrechtSearch in Google Scholar

Donald, C.M. (1968). The breeding of crop ideotypes. Euphytica, 17, 385-403.10.1007/BF00056241Search in Google Scholar

Ellis, R.H., Covell, S., Roberts, E.H., Summerfield, R.J.(1986). The influence of temperature on seed germination rate in grain legumes. II. Intraspecific variation in chickpea at constant temperatures. Journal of Experimental Botany, 37, 1503-1515.10.1093/jxb/37.10.1503Search in Google Scholar

Fellner, M., Sawhney, V.K. (2001). Seed germination in a tomato male-sterile mutant is resistant to osmotic, salt and low temperature stresses. Theoretical and Applied Genetics, 102, 215-221.10.1007/s001220051638Search in Google Scholar

Fenner, M., Thompson, K. (2005). The ecology of seeds. Cambridge. UK: Cambridge University Press.10.1017/CBO9780511614101Search in Google Scholar

Finch-Savage, W.E., Bergervoet, J.H.W., Bino, R.J., Clay, H.A., Groot, S.P.C. (1998). Nuclear replication activity during seed-dormancy breakage and germination in the three tree species: Norway maple (Acer platanoides L.), sycamore (Acer pseudoplatanus L.) and cherry (Prunus avium L.). Annals of Botany, 81, 519-526.10.1006/anbo.1998.0587Search in Google Scholar

Finch-Savage, W.E., Phelps, K. (1993). Onion (Allium cepa L.) seedling emergence patterns can be explained by the influence of soil temperature and water potential on seed germination. Journal of Experimental Botany 44, 407-414.10.1093/jxb/44.2.407Search in Google Scholar

Forcella, F. (1998). Real-time assessment of seed dormancy and seedling growth for weed management. Seed Science Research, 8, 201-209.10.1017/S0960258500004116Search in Google Scholar

France, J., Thornley, J.H.M. (1984). Mathematical models in agriculture. Butterworths, LondonSearch in Google Scholar

Garcia-Huidobro, J., Monteith, J.L., Squire, G.R. (1982). Time, temperature and germination of pearl millet (Pennisetum typhoides S.H.). 1. Constant temperature. Journal of Experimental Botany, 33, 288-296.10.1093/jxb/33.2.288Search in Google Scholar

Gładyszewska B. (1998). Ocena wpływu przedsiewnej laserowej biostymulacji nasion pomidorów na proces ich kiełkowania. Rozprawa doktorska. Lublin. Maszynopis.Search in Google Scholar

Gładyszewska B., Koper R. (2002a). Symulacyjny model procesu kiełkowania nasion w ujęciu analitycznym. Inżynieria Rolnicza, 7, 59-63.Search in Google Scholar

Gładyszewska, B., Koper, R. (2002b). Zastosowanie modelowania matematycznego w ocenie żywotności nasion. Inżynieria Rolnicza, 7, 51-57.Search in Google Scholar

Gładyszewska, B. (2004). Matematyczne metody oceny wpływu procesów przedsiewnej stymulacji na kiełkowanie nasion. Acta Agrophysica, 3(3), 443-452.Search in Google Scholar

Gładyszewska, B., Ciupak, A. (2009). Effect of temperature on the viability of buckwheat (cv. Kora) seeds. Teka Komisji Motoryzacji i Energetyki Rolnictwa, 6, 31-39.Search in Google Scholar

Gładyszewska, B., Koper, R., Drabarek, L., Gładyszewski, G. (2001). Analityczne modele procesu kiełkowania nasion. Inżynieria Rolnicza, 2, 57-61.Search in Google Scholar

Glaser, R. (1975). Wstęp do biofizyki. PZWL, Warszawa.Search in Google Scholar

Hageseth, G.T., Joyner, R.D. (1975). Kinetics and thermodynamics of isothermal seed germination. Journal of Theoretical Biology, 53, 51-65.10.1016/0022-5193(75)90102-2Search in Google Scholar

Hunt, L.A. (1993). Designing improved plant types: a breeder’s viewpoint. In: F.W.T., Penning de Vries F.P., Teng P., Metselaar K. (eds) Systems approaches for agricultural development. Springer, DordrechtSearch in Google Scholar

Jazwiński, J., Pabis, S., Wieremiejczyk, W. (1975). Symulacyjne metody badań niezawodności systemów technicznych. Materiały na „Szkołę Zimową -75”. Jaszowiec, 13-18 stycznia 1975, Katowice.Search in Google Scholar

Keller, E.F. (2002). Making Sense of Life. Explaining Biological Development with Models, Metaphors, and Machines. Cambridge, MA: Harvard University Press.10.4159/9780674039445Search in Google Scholar

Köchy, M., Tielbörger, K. (2007). Hydrothermal time model of germination: parameters for 36 Mediterranean annual species based on a simplified approach. Basic and Applied Ecology, 8,171-182.10.1016/j.baae.2006.04.002Search in Google Scholar

Kropff, M.J., Haverkort, A.J., Aggarwal, P.K., Kooman, P.L. (1995). Using systems approaches to design and evaluate ideotypes for specific environments. J. Bouma, A. Kuyvenhoven, B.A.M. Bouman, J.C. Luyten, H.G. Zistra (Eds.), Eco-regional approaches for sustainable li use and food production, Kluwer Academic Publishers, Dordrecht, The Netherlis, 417-435.10.1007/978-94-011-0121-9_21Search in Google Scholar

Maksym, P., Marciniak, A.W., Kostecki, R. (2006). Zastosowanie sieci bayesowskich do modelowania rolniczego procesu produkcyjnego. Inżynieria Rolnicza, 12, 321-330.Search in Google Scholar

Matthews, R.B., Kropff, M.J., Bachelet, D., van Laar, H.H. (1995). Modelling the impact of climate change on rice production in Asia. CAB International, Wallingford, UK.Search in Google Scholar

Mesgaran, M.B., Mashhadi, H.R., Alizadeh, H., Hunt, J., Young, K.R., Cousens, R.D. (2012). Importance of distribution function selection for hydrothermal time models of seed germination. Weed Research, 53, 89-101.10.1111/wre.12008Search in Google Scholar

Michałek, R. (20018). Przyszłość inżynierii rolniczej jako nauki i kierunku kształcenia. Inżynieria Rolnicza, 1(99), 297-302.Search in Google Scholar

Minorsky, P.V. (2003). Achieving the in silico plant. Systems biology and the future of plant biological research. Plant Physiolgy, 132, 404-409.10.1104/pp.900076Search in Google Scholar

Muszyński, S., Świetlicka, I., Świetlicki, M., Gładyszewska, B. (2015). Modelowanie kinetyki kiełkowania nasion pomidora z wykorzystaniem równania Gompertza. Acta Scientiarum Polonorum Technica Agraria, 14(1-2), 61-69.Search in Google Scholar

Niklas, K. (2003). The bio-logic and machinery of plant morphogenesis. American Journal of Botany, 90, 515-525.10.3732/ajb.90.4.51521659144Search in Google Scholar

Odabas, M.S., Mut, Z. (2007). Modelling the effect of temperature on percentage and duration of seed germination in grain legumes and cereals. American Journal of Plant Physiology, 2, 303-310.10.3923/ajpp.2007.303.310Search in Google Scholar

Pabis, S. (1985). Metodologia i metody nauk empirycznych. PWN, Warszawa.Search in Google Scholar

Palanisamy, S., Penning de Vries, F.W.T., Mohiass, S., Thiyagarajan, T.M., Kareem A.A. (1993). Simulation in pre-testing of rice genotypes in Tamil Nadu. F.W.T. Penning de Vries, P. Teng, K. Metselaar (Eds.), Systems approaches for sustainable agricultural development, Kluwer Academic Publishers, Dordrecht, The Netherlis, 63-75.Search in Google Scholar

Penning de Vries, F.W.T. (1982). Simulation of Plant Growth and Crop Production. Van Laar H.H. (Eds.), Simulation Monographs, Pudoc, Wageningen, The Netherlis.Search in Google Scholar

Prusinkiewicz, P. (2004). Modeling plant growth and development. Current Opinion in Plant Biology, 7, 79-83.10.1016/j.pbi.2003.11.007Search in Google Scholar

Rabbinge, R. (1986). The bridge function of crop ecology. Netherlis Journal of Agricultural Sciences, 34, 239-251.10.18174/njas.v34i3.16778Search in Google Scholar

Ranal, M.A., Santana, D.G. (2006). How and why to measure the germination process. Revista Brasileira de Botânica, 29, 1-11.10.1590/S0100-84042006000100002Search in Google Scholar

Ratkowsky, D.A., Lowry, R.K., McMeekin, T.A., Stokes, A.N., Chiler, R.E. (1983). Model for bacterial culture growth rate throughout the entire biokinetic temperature range. Journal of bacteriology, 154(3), 1222-1226.10.1128/jb.154.3.1222-1226.1983Search in Google Scholar

Roberts, E.H. (1988). Temperature and seed germination. In: Long, S.P., Woodword, F.I. (Eds.), Plants and Temperature. Society for Experimental Biology. Company of Biologists, Cambridge.Search in Google Scholar

Roberts, E.H., Ellis, R.H. (1989). Water and seed survival. Annals of Botany, 63, 39-52.10.1093/oxfordjournals.aob.a087727Search in Google Scholar

Roe B. P. (1992). Probabilistic and statistics in experimental physics. Springer-Verlag, New York.Search in Google Scholar

Roman, E.S., Murphy, S.D., Swanton, C.J. (2000). Simulation of Chenopodium album Seedling Emergence. Weed Science, 48, 217-22410.1614/0043-1745(2000)048[0217:SOCASE]2.0.CO;2Search in Google Scholar

Roman, E.S., Thomas, A.G., Murphy, S.D., Swanton, C.J. (1999). Modelling germination and seedling elongation of common lambsquarters (Chenopodium album). Weed Science, 47, 149-155.10.1017/S0043174500091554Search in Google Scholar

Room, P., Hanan, J., Prusinkiewicz, P. (1996). Virtual plants: new perspectives for ecologists, pathologists and agricultural scientists. Trends in Plant Science, 1, 33-38.10.1016/S1360-1385(96)80021-5Search in Google Scholar

Rowse, H.R., Finch-Savage, W.E. (2003). Hydrothermal threshold models can describe the germination response of carrot (Daucus carota) and onion (Allium cepa) seed populations across both sub- and supra-optimal temperatures. New Phytologist, 158, 101-108.10.1046/j.1469-8137.2003.00707.xSearch in Google Scholar

Seligman, N.G. (1990). The crop model record: promise or poor show? R. Rabbinge, J. Goudriaan, H. van Keulen, F.W.T. Penning de Vries, H.H. van Laar (Eds.), Theoretical Production Ecology: Reflections and Prospects, PUDOC, Wageningen, pp. 249-258.Search in Google Scholar

Shafii, B., Price, W.J., Swensen, J.B., i Murray, G.A. (1991). “Nonlinear Estimation of Growth Curve Models for Germination Data Analysis,” in Proceedings of the 1991 Kansas State University Conference on Applied Statistics in Agriculture, G. A. Milliken i J. R. Schwenke (eds.), Manhattan, KS: Kansas State University, 19-42.Search in Google Scholar

Shafii, B., Price, W.J. (2001). Estimation of cardinal temperatures in germination data analysis. Journal of Agricultural, Biological and Environmental Statistics, 6, 356-36610.1198/108571101317096569Search in Google Scholar

Tjørve, E., Tjørve, K.M.C. (2010). A unified approach to the Richards-model family for use in growth analyses: why we need only two model forms. Journal of Theoretical Biology, 267, 417-425.10.1016/j.jtbi.2010.09.008Search in Google Scholar

Trajer, J. (2005). Sztuczne sieci neuronowe w modelowaniu procesów z ograniczonym zbiorem danych w inżynierii rolniczej. Inżynieria Rolnicza, 2(62), 55-61.Search in Google Scholar

Tsoularis, A., Wallace J. (2002). Analysis of logistic growth models. Mathematical Biosciences, 179, 21-55.10.1016/S0025-5564(02)00096-2Search in Google Scholar

Van Keulen, H., Stol, W. (1995). Agro-ecological zonation for potato production. A.J. Haverkort, D.K.L. Mackerron (Eds.), Potato ecology and modelling of crops under conditions limiting growth, Kluwer Academic Publishers, Dordrecht, The Netherlis (1995), pp. 357-371.10.1007/978-94-011-0051-9_23Search in Google Scholar

Verhulst, P.F. (1838). Notice sur la loi que la population suit dans son accroissement. Correspondence Mathematique et Physique, 10, 113.Search in Google Scholar

Werker, A.R., Jaggard, K.W. (1997). Modelling Asymmetrical Growth Curves that Rise and then Fall: Applications to Foliage Dynamics of Sugar Beet (Beta vulgaris L.). Annals of Botany, 79, 657-665.10.1006/anbo.1997.0387Search in Google Scholar

Wolf, J. (1993). Effects of climate change on wheat production potential in the European Community. European Journal of Agronomy, 2, 281-292.10.1016/S1161-0301(14)80176-7Search in Google Scholar

Yang, R.C., Kozak, A., Smith, J.H.G. (1978). The potential of Weibull-type functions as flexible growth curves. Canadian Journal of Forest Research, 8, 424-431.10.1139/x78-062Search in Google Scholar

Zeide, B. (1993). Analysis of growth equations. Forest Science, 39, 594-616.10.1093/forestscience/39.3.594Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo