Human exposure to extremely low frequency magnetic field represents a risk to their health. This paper takes into consideration the level of an extremely low-frequency magnetic field between 30 and 300 Hz emitted by an AC laptop adapter. The experiment consists of testing 17 different AC adapters for laptops. During the testing, laptops are operated in a normal operating conditions as well as under heavy load. The magnetic field measurement is conducted in the area around the AC adapter. Obtained data is evaluated according to the critical level of the magnetic field proposed by safety standards. Furthermore, data is classified by a K-medians method in order to determine the critical levels of the magnetic field exposure in the nearby area of the AC adapter. Obtained classifications are evaluated according to safety standards, giving a critical analysis of magnetic field areas at risk. Due to emission of a very strong magnetic field in certain areas, a recommendation for safety use of the AC adapter is proposed.
To determine the mass-moment-of-inertia properties of devices under test with particularly small mass moments of inertia (some 10−4 kg m2), two measurement set-ups based on different measurement principles were developed. One set-up is based on a physical pendulum, the second set-up incorporates a torsion pendulum. Both measurement set-ups and their measurement principles are described in detail, including the chosen data acquisition and analysis. Measurement uncertainty estimations according to the Guide to the Expression of Uncertainty in Measurement (GUM) were carried out for both set-ups by applying Monte Carlo simulations. Both set-ups were compared using the same three devices under test. For each measurement result, the measurement uncertainties were estimated. The measurement results are compared in terms of consistency and the resulting measurement uncertainties. For the given devices under test, the torsion pendulum set-up gave results with smaller measurement uncertainties compared to the set-up incorporating a physical pendulum.
The paper describes the visualization of the cells (ESEs) and mucilage (ECMSN) in an embryogenic tissue via magnetic resonance imaging (MRI) relaxometry measurement combined with the subsequent multi-parametric segmentation. The computed relaxometry maps T1 and T2 show a thin layer (transition layer) between the culture medium and the embryogenic tissue. The ESEs, mucilage, and transition layer differ in their relaxation times T1 and T2; thus, these times can be used to characterize the individual parts within the embryogenic tissue. The observed mean values of the relaxation times T1 and T2 of the ESEs, mucilage, and transition layer are as follows: 1469 ± 324 and 53 ± 10 ms, 1784 ± 124 and 74 ± 8 ms, 929 ± 164 and 32 ± 4.7 ms, respectively. The multi-parametric segmentation exploiting the T1 and T2 relaxation times as a classifier shows the distribution of the ESEs and mucilage within the embryogenic tissue. The discussed T1 and T2 indicators can be utilized to characterize both the growth-related changes in an embryogenic tissue and the effect of biotic/abiotic stresses, thus potentially becoming a distinctive indicator of the state of any examined embryogenic tissue.
The paper deals with a methodology proposed for measuring the concentration of air ions in the environment of speleotherapeutic caves, and with the implementation of the AK-UTEE-v2 ionmeter. Speleotherapy, in the context of its general definition, is the medical therapy that utilizes the climate of selected caves to treat patients with health problems such as asthma. These spaces are characterized by the presence of high air humidity and they make extreme demands on the execution of the measuring device, the Gerdien tube (GT in the following) in particular, and on the amplifier electronics. The result is an automated measuring system using a GT with low-volume air flow, enabling long-term measuring of air ion concentration and determination of spectral ion characteristics. Interesting from the instrumentation viewpoint are the GT design, active shielding, and execution of the electrometric amplifier. A specific method for the calculation of spectral ion characteristics and the mode of automatic calibration were proposed and a procedure of automatic measurement in the absence of attendants was set up. The measuring system is designed for studying and long-term monitoring of the concentration of light negative ions in dependence on climatic conditions and on the mobility of ions occurring in the cave.
The investigation presented in the paper was performed in the laboratories of the Department of Theoretical and Experimental Electrical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, between April 22 and June 26, 2014. We examined a homogeneous sample of male and female participants comprising a total of 49 persons aged 19 to 26. The time required for the measurement of psychophysiological parameters corresponded to 19 minutes, encompassing five stages: Basic (5 mins.), Color (2 mins.), Rest (5 mins.), Math (2 mins.), and Rest (5 mins.). All the measuring cycles were carried out using a BioGraph Infiniti device (Thought Technology, Ltd.). Generally, the impact of the environment upon living organisms constitutes a crucial problem examined by today’s science. In this context, the present article describes the results of an investigation focused on ionosphere parameter variation and its role in the basic function of the nervous system. The discussed research concentrates on the measurement and detection of changes in the region of very low electromagnetic field frequencies; the authors introduce and verify related theoretical and experimental procedures to define the effects that influence brain activity and the cardiovascular system.
The convergence rate and the continuous tracking precision are two main problems of the existing adaptive notch filter (ANF) for frequency tracking. To solve the problems, the frequency is detected by interpolation FFT at first, which aims to overcome the convergence rate of the ANF. Then, referring to the idea of negative feedback, an evaluation factor is designed to monitor the ANF parameters and realize continuously high frequency tracking accuracy. According to the principle, a novel adaptive frequency estimation algorithm based on interpolation FFT and improved ANF is put forward. Its basic idea, specific measures and implementation steps are described in detail. The proposed algorithm obtains a fast estimation of the signal frequency, higher accuracy and better universality qualities. Simulation results verified the superiority and validity of the proposed algorithm when compared with original algorithms.
Human exposure to extremely low frequency magnetic field represents a risk to their health. This paper takes into consideration the level of an extremely low-frequency magnetic field between 30 and 300 Hz emitted by an AC laptop adapter. The experiment consists of testing 17 different AC adapters for laptops. During the testing, laptops are operated in a normal operating conditions as well as under heavy load. The magnetic field measurement is conducted in the area around the AC adapter. Obtained data is evaluated according to the critical level of the magnetic field proposed by safety standards. Furthermore, data is classified by a K-medians method in order to determine the critical levels of the magnetic field exposure in the nearby area of the AC adapter. Obtained classifications are evaluated according to safety standards, giving a critical analysis of magnetic field areas at risk. Due to emission of a very strong magnetic field in certain areas, a recommendation for safety use of the AC adapter is proposed.
To determine the mass-moment-of-inertia properties of devices under test with particularly small mass moments of inertia (some 10−4 kg m2), two measurement set-ups based on different measurement principles were developed. One set-up is based on a physical pendulum, the second set-up incorporates a torsion pendulum. Both measurement set-ups and their measurement principles are described in detail, including the chosen data acquisition and analysis. Measurement uncertainty estimations according to the Guide to the Expression of Uncertainty in Measurement (GUM) were carried out for both set-ups by applying Monte Carlo simulations. Both set-ups were compared using the same three devices under test. For each measurement result, the measurement uncertainties were estimated. The measurement results are compared in terms of consistency and the resulting measurement uncertainties. For the given devices under test, the torsion pendulum set-up gave results with smaller measurement uncertainties compared to the set-up incorporating a physical pendulum.
The paper describes the visualization of the cells (ESEs) and mucilage (ECMSN) in an embryogenic tissue via magnetic resonance imaging (MRI) relaxometry measurement combined with the subsequent multi-parametric segmentation. The computed relaxometry maps T1 and T2 show a thin layer (transition layer) between the culture medium and the embryogenic tissue. The ESEs, mucilage, and transition layer differ in their relaxation times T1 and T2; thus, these times can be used to characterize the individual parts within the embryogenic tissue. The observed mean values of the relaxation times T1 and T2 of the ESEs, mucilage, and transition layer are as follows: 1469 ± 324 and 53 ± 10 ms, 1784 ± 124 and 74 ± 8 ms, 929 ± 164 and 32 ± 4.7 ms, respectively. The multi-parametric segmentation exploiting the T1 and T2 relaxation times as a classifier shows the distribution of the ESEs and mucilage within the embryogenic tissue. The discussed T1 and T2 indicators can be utilized to characterize both the growth-related changes in an embryogenic tissue and the effect of biotic/abiotic stresses, thus potentially becoming a distinctive indicator of the state of any examined embryogenic tissue.
The paper deals with a methodology proposed for measuring the concentration of air ions in the environment of speleotherapeutic caves, and with the implementation of the AK-UTEE-v2 ionmeter. Speleotherapy, in the context of its general definition, is the medical therapy that utilizes the climate of selected caves to treat patients with health problems such as asthma. These spaces are characterized by the presence of high air humidity and they make extreme demands on the execution of the measuring device, the Gerdien tube (GT in the following) in particular, and on the amplifier electronics. The result is an automated measuring system using a GT with low-volume air flow, enabling long-term measuring of air ion concentration and determination of spectral ion characteristics. Interesting from the instrumentation viewpoint are the GT design, active shielding, and execution of the electrometric amplifier. A specific method for the calculation of spectral ion characteristics and the mode of automatic calibration were proposed and a procedure of automatic measurement in the absence of attendants was set up. The measuring system is designed for studying and long-term monitoring of the concentration of light negative ions in dependence on climatic conditions and on the mobility of ions occurring in the cave.
The investigation presented in the paper was performed in the laboratories of the Department of Theoretical and Experimental Electrical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, between April 22 and June 26, 2014. We examined a homogeneous sample of male and female participants comprising a total of 49 persons aged 19 to 26. The time required for the measurement of psychophysiological parameters corresponded to 19 minutes, encompassing five stages: Basic (5 mins.), Color (2 mins.), Rest (5 mins.), Math (2 mins.), and Rest (5 mins.). All the measuring cycles were carried out using a BioGraph Infiniti device (Thought Technology, Ltd.). Generally, the impact of the environment upon living organisms constitutes a crucial problem examined by today’s science. In this context, the present article describes the results of an investigation focused on ionosphere parameter variation and its role in the basic function of the nervous system. The discussed research concentrates on the measurement and detection of changes in the region of very low electromagnetic field frequencies; the authors introduce and verify related theoretical and experimental procedures to define the effects that influence brain activity and the cardiovascular system.
The convergence rate and the continuous tracking precision are two main problems of the existing adaptive notch filter (ANF) for frequency tracking. To solve the problems, the frequency is detected by interpolation FFT at first, which aims to overcome the convergence rate of the ANF. Then, referring to the idea of negative feedback, an evaluation factor is designed to monitor the ANF parameters and realize continuously high frequency tracking accuracy. According to the principle, a novel adaptive frequency estimation algorithm based on interpolation FFT and improved ANF is put forward. Its basic idea, specific measures and implementation steps are described in detail. The proposed algorithm obtains a fast estimation of the signal frequency, higher accuracy and better universality qualities. Simulation results verified the superiority and validity of the proposed algorithm when compared with original algorithms.