The Romanian, as well as other wind design codes for building structures, provides with limited degree of accuracy, the aerodynamic loads distribution on buildings up to 200 meters tall in an equivalent static approach (ESWL). For tall wind-sensitive building structures, especially for those with irregular shapes, most of the codes or standards recommend for design to use pressure data recorded in the wind tunnel. The ESWL approach is however used as reference estimation and structural first phase design. Advances on experimental and computational capabilities, led in the past decade to a significant development of time-domain analysis framework, both for seismic and wind loads. While the major outcome for earthquake engineering practitioners is to select appropriate design input ground motions at a particular site, the wind engineering practitioners are facing numerical difficulties to handle large wind loading durations, especially dealing with nonlinear-induced effects.
The paper presents a real-time integrated framework for the analysis and design of tall buildings to wind loads, based on the time-domain analysis tool, as a prerequisite for higher level modules as vulnerability, risk and loss estimation, and optimization analyses.
Flows in unsaturated medium are frequent in the field of civil engineering and more particularly in geotechnics. The study undertaken here tries to solve the unsaturated transient flow equation in porous media using the finite element method. Numerical solution of a finite element discretization is used along with an implicit integration scheme of the time stepping. A functional one that makes it possible to find the distribution of the hydraulic load has been proposed and a calculation program has been developed. The results obtained by this program called TFAP (Transient Flow Analysis Program) are compared to other previous work in the subject. The authors show the importance of this study through two real examples. Liakopoulos conducted several experiments on the water drainage through a vertical column filled with Del Monte sand. One of these experiments was chosen to perform a simulation by the model. The results of the calculation are compared with the experimental data as well.
The Romanian, as well as other wind design codes for building structures, provides with limited degree of accuracy, the aerodynamic loads distribution on buildings up to 200 meters tall in an equivalent static approach (ESWL). For tall wind-sensitive building structures, especially for those with irregular shapes, most of the codes or standards recommend for design to use pressure data recorded in the wind tunnel. The ESWL approach is however used as reference estimation and structural first phase design. Advances on experimental and computational capabilities, led in the past decade to a significant development of time-domain analysis framework, both for seismic and wind loads. While the major outcome for earthquake engineering practitioners is to select appropriate design input ground motions at a particular site, the wind engineering practitioners are facing numerical difficulties to handle large wind loading durations, especially dealing with nonlinear-induced effects.
The paper presents a real-time integrated framework for the analysis and design of tall buildings to wind loads, based on the time-domain analysis tool, as a prerequisite for higher level modules as vulnerability, risk and loss estimation, and optimization analyses.
Flows in unsaturated medium are frequent in the field of civil engineering and more particularly in geotechnics. The study undertaken here tries to solve the unsaturated transient flow equation in porous media using the finite element method. Numerical solution of a finite element discretization is used along with an implicit integration scheme of the time stepping. A functional one that makes it possible to find the distribution of the hydraulic load has been proposed and a calculation program has been developed. The results obtained by this program called TFAP (Transient Flow Analysis Program) are compared to other previous work in the subject. The authors show the importance of this study through two real examples. Liakopoulos conducted several experiments on the water drainage through a vertical column filled with Del Monte sand. One of these experiments was chosen to perform a simulation by the model. The results of the calculation are compared with the experimental data as well.