Rivista e Edizione

Volume 16 (2021): Edizione 4 (December 2021)

Volume 16 (2021): Edizione 3 (September 2021)

Volume 16 (2021): Edizione 2 (June 2021)

Volume 16 (2021): Edizione 1 (March 2021)

Volume 15 (2019): Edizione 4 (December 2019)

Volume 15 (2019): Edizione 3 (September 2019)

Volume 15 (2019): Edizione 2 (June 2019)

Volume 15 (2019): Edizione 1 (March 2019)

Volume 14 (2018): Edizione 4 (December 2018)

Volume 14 (2018): Edizione 3 (September 2018)

Volume 14 (2018): Edizione 2 (June 2018)

Volume 14 (2018): Edizione 1 (March 2018)

Volume 13 (2017): Edizione 4 (December 2017)

Volume 13 (2017): Edizione 3 (September 2017)

Volume 13 (2017): Edizione 2 (June 2017)

Volume 13 (2017): Edizione 1 (March 2017)

Volume 12 (2016): Edizione 4 (December 2016)

Volume 12 (2016): Edizione 3 (September 2016)

Volume 12 (2016): Edizione 2 (June 2016)

Volume 12 (2016): Edizione 1 (March 2016)

Volume 11 (2015): Edizione 4 (December 2015)

Volume 11 (2015): Edizione 3 (September 2015)

Volume 11 (2015): Edizione 2 (May 2015)

Volume 11 (2015): Edizione 1 (March 2015)

Volume 10 (2014): Edizione 4 (December 2014)

Volume 10 (2014): Edizione 3 (September 2014)

Volume 10 (2014): Edizione 2 (June 2014)

Volume 10 (2014): Edizione 1 (March 2014)

Volume 9 (2013): Edizione 4 (December 2013)

Volume 9 (2013): Edizione 3 (September 2013)

Volume 9 (2013): Edizione 2 (June 2013)

Volume 9 (2013): Edizione 1 (March 2013)

Dettagli della rivista
Formato
Rivista
eISSN
2784-1391
Pubblicato per la prima volta
12 Apr 2013
Periodo di pubblicazione
4 volte all'anno
Lingue
Inglese

Cerca

Volume 13 (2017): Edizione 3 (September 2017)

Dettagli della rivista
Formato
Rivista
eISSN
2784-1391
Pubblicato per la prima volta
12 Apr 2013
Periodo di pubblicazione
4 volte all'anno
Lingue
Inglese

Cerca

3 Articoli
access type Accesso libero

POPULATION PERSPECTIVE ON THE SOCIAL IMPACT OF A STRONG EARTHQUAKE AFFECTING BUCHAREST

Pubblicato online: 07 Nov 2017
Pagine: 1 - 9

Astratto

Abstract

The paper presents a series of the results obtained from an extensive questionnaire survey conducted in Bucharest in 2016. The investigated topics are related to earthquake awareness and preparedness of the population currently living in the capital city of Romania, safety concerns and post-earthquake behaviour. Results are interpreted based on several criteria which characterize the target population such as age, education, income, children, as well as the type and year of construction of the building they inhabit. The questionnaire was completed by 1000 respondents and the main findings show that people are generally neither well informed nor prepared for a future major seismic event affecting Bucharest. However, the level of involvement in postearthquake situations is positive, the majority of respondents agreeing to offer humanitarian help in various forms as well as temporary shelter to people, especially relatives or friends.

Parole chiave

  • Earthquake risk perception
  • Bucharest
  • questionnaire
  • awareness
  • Vrancea seismic source
access type Accesso libero

FLASH-FLOOD MODELLING WITH ARTIFICIAL NEURAL NETWORKS USING RADAR RAINFALL ESTIMATES

Pubblicato online: 07 Nov 2017
Pagine: 10 - 20

Astratto

Abstract

The use of artificial neural networks (ANNs) in modelling the hydrological processes has become a common approach in the last two decades, among side the traditional methods. In regard to the rainfall-runoff modelling, in both traditional and ANN models the use of ground rainfall measurements is prevalent, which can be challenging in areas with low rain gauging station density, especially in catchments where strong focused rainfall can generate flash-floods. The weather radar technology can prove to be a solution for such areas by providing rain estimates with good time and space resolution. This paper presents a comparison between different ANN setups using as input both ground and radar observations for modelling the rainfall-runoff process for Bahluet catchment, with focus on a flash-flood observed in the catchment.

Parole chiave

  • Artificial neural network
  • flash-floods
  • radar rainfall estimates
  • rainfall-runoff modelling
access type Accesso libero

EVALUATION OF THE POUNDING FORCES DURING EARTHQUAKE USING EXPLICIT DYNAMIC TIME INTEGRATION METHOD

Pubblicato online: 07 Nov 2017
Pagine: 21 - 39

Astratto

Abstract

Pounding effects during earthquake is a subject of high significance for structural engineers performing in the urban areas. In this paper, two ways to account for structural pounding are used in a MATLAB code, namely classical stereomechanics approach and nonlinear viscoelastic impact element. The numerical study is performed on SDOF structures acted by ELCentro recording. While most of the studies available in the literature are related to Newmark implicit time integration method, in this study the equations of motion are numerical integrated using central finite difference method, an explicit method, having the main advantage that in the displacement at the ith+1 step is calculated based on the loads from the ith step. Thus, the collision is checked and the pounding forces are taken into account into the equation of motion in an easier manner than in an implicit integration method. First, a comparison is done using available data in the literature. Both linear and nonlinear behavior of the structures during earthquake is further investigated. Several layout scenarios are also investigated, in which one or more weak buildings are adjacent to a stiffer building. One of the main findings in this paper is related to the behavior of a weak structure located between two stiff structures.

Parole chiave

  • SDOF
  • stereomechanics
  • nonlinear viscoelastic
  • gap
3 Articoli
access type Accesso libero

POPULATION PERSPECTIVE ON THE SOCIAL IMPACT OF A STRONG EARTHQUAKE AFFECTING BUCHAREST

Pubblicato online: 07 Nov 2017
Pagine: 1 - 9

Astratto

Abstract

The paper presents a series of the results obtained from an extensive questionnaire survey conducted in Bucharest in 2016. The investigated topics are related to earthquake awareness and preparedness of the population currently living in the capital city of Romania, safety concerns and post-earthquake behaviour. Results are interpreted based on several criteria which characterize the target population such as age, education, income, children, as well as the type and year of construction of the building they inhabit. The questionnaire was completed by 1000 respondents and the main findings show that people are generally neither well informed nor prepared for a future major seismic event affecting Bucharest. However, the level of involvement in postearthquake situations is positive, the majority of respondents agreeing to offer humanitarian help in various forms as well as temporary shelter to people, especially relatives or friends.

Parole chiave

  • Earthquake risk perception
  • Bucharest
  • questionnaire
  • awareness
  • Vrancea seismic source
access type Accesso libero

FLASH-FLOOD MODELLING WITH ARTIFICIAL NEURAL NETWORKS USING RADAR RAINFALL ESTIMATES

Pubblicato online: 07 Nov 2017
Pagine: 10 - 20

Astratto

Abstract

The use of artificial neural networks (ANNs) in modelling the hydrological processes has become a common approach in the last two decades, among side the traditional methods. In regard to the rainfall-runoff modelling, in both traditional and ANN models the use of ground rainfall measurements is prevalent, which can be challenging in areas with low rain gauging station density, especially in catchments where strong focused rainfall can generate flash-floods. The weather radar technology can prove to be a solution for such areas by providing rain estimates with good time and space resolution. This paper presents a comparison between different ANN setups using as input both ground and radar observations for modelling the rainfall-runoff process for Bahluet catchment, with focus on a flash-flood observed in the catchment.

Parole chiave

  • Artificial neural network
  • flash-floods
  • radar rainfall estimates
  • rainfall-runoff modelling
access type Accesso libero

EVALUATION OF THE POUNDING FORCES DURING EARTHQUAKE USING EXPLICIT DYNAMIC TIME INTEGRATION METHOD

Pubblicato online: 07 Nov 2017
Pagine: 21 - 39

Astratto

Abstract

Pounding effects during earthquake is a subject of high significance for structural engineers performing in the urban areas. In this paper, two ways to account for structural pounding are used in a MATLAB code, namely classical stereomechanics approach and nonlinear viscoelastic impact element. The numerical study is performed on SDOF structures acted by ELCentro recording. While most of the studies available in the literature are related to Newmark implicit time integration method, in this study the equations of motion are numerical integrated using central finite difference method, an explicit method, having the main advantage that in the displacement at the ith+1 step is calculated based on the loads from the ith step. Thus, the collision is checked and the pounding forces are taken into account into the equation of motion in an easier manner than in an implicit integration method. First, a comparison is done using available data in the literature. Both linear and nonlinear behavior of the structures during earthquake is further investigated. Several layout scenarios are also investigated, in which one or more weak buildings are adjacent to a stiffer building. One of the main findings in this paper is related to the behavior of a weak structure located between two stiff structures.

Parole chiave

  • SDOF
  • stereomechanics
  • nonlinear viscoelastic
  • gap

Pianifica la tua conferenza remota con Sciendo