Rivista e Edizione

Volume 32 (2022): Edizione 2 (June 2022)
Towards Self-Healing Systems through Diagnostics, Fault-Tolerance and Design (Special section, pp. 171-269), Marcin Witczak and Ralf Stetter (Eds.)

Volume 32 (2022): Edizione 1 (March 2022)

Volume 31 (2021): Edizione 4 (December 2021)
Advanced Machine Learning Techniques in Data Analysis (special section, pp. 549-611), Maciej Kusy, Rafał Scherer, and Adam Krzyżak (Eds.)

Volume 31 (2021): Edizione 3 (September 2021)

Volume 31 (2021): Edizione 2 (June 2021)

Volume 31 (2021): Edizione 1 (March 2021)

Volume 30 (2020): Edizione 4 (December 2020)

Volume 30 (2020): Edizione 3 (September 2020)
Big Data and Signal Processing (Special section, pp. 399-473), Joanna Kołodziej, Sabri Pllana, Salvatore Vitabile (Eds.)

Volume 30 (2020): Edizione 2 (June 2020)

Volume 30 (2020): Edizione 1 (March 2020)

Volume 29 (2019): Edizione 4 (December 2019)
New Perspectives in Nonlinear and Intelligent Control (In Honor of Alexander P. Kurdyukov) (special section, pp. 629-712), Julio B. Clempner, Enso Ikonen, Alexander P. Kurdyukov (Eds.)

Volume 29 (2019): Edizione 3 (September 2019)
Information Technology for Systems Research (special section, pp. 427-515), Piotr Kulczycki, Janusz Kacprzyk, László T. Kóczy, Radko Mesiar (Eds.)

Volume 29 (2019): Edizione 2 (June 2019)
Advances in Complex Cloud and Service Oriented Computing (special section, pp. 213-274), Anna Kobusińska, Ching-Hsien Hsu, Kwei-Jay Lin (Eds.)

Volume 29 (2019): Edizione 1 (March 2019)
Exploring Complex and Big Data (special section, pp. 7-91), Johann Gamper, Robert Wrembel (Eds.)

Volume 28 (2018): Edizione 4 (December 2018)

Volume 28 (2018): Edizione 3 (September 2018)

Volume 28 (2018): Edizione 2 (June 2018)
Advanced Diagnosis and Fault-Tolerant Control Methods (special section, pp. 233-333), Vicenç Puig, Dominique Sauter, Christophe Aubrun, Horst Schulte (Eds.)

Volume 28 (2018): Edizione 1 (March 2018)
Ediziones in Parameter Identification and Control (special section, pp. 9-122), Abdel Aitouche (Ed.)

Volume 27 (2017): Edizione 4 (December 2017)

Volume 27 (2017): Edizione 3 (September 2017)
Systems Analysis: Modeling and Control (special section, pp. 457-499), Vyacheslav Maksimov and Boris Mordukhovich (Eds.)

Volume 27 (2017): Edizione 2 (June 2017)

Volume 27 (2017): Edizione 1 (March 2017)

Volume 26 (2016): Edizione 4 (December 2016)

Volume 26 (2016): Edizione 3 (September 2016)

Volume 26 (2016): Edizione 2 (June 2016)

Volume 26 (2016): Edizione 1 (March 2016)

Volume 25 (2015): Edizione 4 (December 2015)
Special issue: Complex Problems in High-Performance Computing Systems, Editors: Mauro Iacono, Joanna Kołodziej

Volume 25 (2015): Edizione 3 (September 2015)

Volume 25 (2015): Edizione 2 (June 2015)

Volume 25 (2015): Edizione 1 (March 2015)
Safety, Fault Diagnosis and Fault Tolerant Control in Aerospace Systems, Silvio Simani, Paolo Castaldi (Eds.)

Volume 24 (2014): Edizione 4 (December 2014)

Volume 24 (2014): Edizione 3 (September 2014)
Modelling and Simulation of High Performance Information Systems (special section, pp. 453-566), Pavel Abaev, Rostislav Razumchik, Joanna Kołodziej (Eds.)

Volume 24 (2014): Edizione 2 (June 2014)
Signals and Systems (special section, pp. 233-312), Ryszard Makowski and Jan Zarzycki (Eds.)

Volume 24 (2014): Edizione 1 (March 2014)
Selected Problems of Biomedical Engineering (special section, pp. 7 - 63), Marek Kowal and Józef Korbicz (Eds.)

Volume 23 (2013): Edizione 4 (December 2013)

Volume 23 (2013): Edizione 3 (September 2013)

Volume 23 (2013): Edizione 2 (June 2013)

Volume 23 (2013): Edizione 1 (March 2013)

Volume 22 (2012): Edizione 4 (December 2012)
Hybrid and Ensemble Methods in Machine Learning (special section, pp. 787 - 881), Oscar Cordón and Przemysław Kazienko (Eds.)

Volume 22 (2012): Edizione 3 (September 2012)

Volume 22 (2012): Edizione 2 (June 2012)
Analysis and Control of Spatiotemporal Dynamic Systems (special section, pp. 245 - 326), Dariusz Uciński and Józef Korbicz (Eds.)

Volume 22 (2012): Edizione 1 (March 2012)
Advances in Control and Fault-Tolerant Systems (special issue), Józef Korbicz, Didier Maquin and Didier Theilliol (Eds.)

Volume 21 (2011): Edizione 4 (December 2011)

Volume 21 (2011): Edizione 3 (September 2011)
Ediziones in Advanced Control and Diagnosis (special section, pp. 423 - 486), Vicenç Puig and Marcin Witczak (Eds.)

Volume 21 (2011): Edizione 2 (June 2011)
Efficient Resource Management for Grid-Enabled Applications (special section, pp. 219 - 306), Joanna Kołodziej and Fatos Xhafa (Eds.)

Volume 21 (2011): Edizione 1 (March 2011)
Semantic Knowledge Engineering (special section, pp. 9 - 95), Grzegorz J. Nalepa and Antoni Ligęza (Eds.)

Volume 20 (2010): Edizione 4 (December 2010)

Volume 20 (2010): Edizione 3 (September 2010)

Volume 20 (2010): Edizione 2 (June 2010)

Volume 20 (2010): Edizione 1 (March 2010)
Computational Intelligence in Modern Control Systems (special section, pp. 7 - 84), Józef Korbicz and Dariusz Uciński (Eds.)

Volume 19 (2009): Edizione 4 (December 2009)
Robot Control Theory (special section, pp. 519 - 588), Cezary Zieliński (Ed.)

Volume 19 (2009): Edizione 3 (September 2009)
Verified Methods: Applications in Medicine and Engineering (special issue), Andreas Rauh, Ekaterina Auer, Eberhard P. Hofer and Wolfram Luther (Eds.)

Volume 19 (2009): Edizione 2 (June 2009)

Volume 19 (2009): Edizione 1 (March 2009)

Volume 18 (2008): Edizione 4 (December 2008)
Ediziones in Fault Diagnosis and Fault Tolerant Control (special issue), Józef Korbicz and Dominique Sauter (Eds.)

Volume 18 (2008): Edizione 3 (September 2008)
Selected Problems of Computer Science and Control (special issue), Krzysztof Gałkowski, Eric Rogers and Jan Willems (Eds.)

Volume 18 (2008): Edizione 2 (June 2008)
Selected Topics in Biological Cybernetics (special section, pp. 117 - 170), Andrzej Kasiński and Filip Ponulak (Eds.)

Volume 18 (2008): Edizione 1 (March 2008)
Applied Image Processing (special issue), Anton Kummert and Ewaryst Rafajłowicz (Eds.)

Volume 17 (2007): Edizione 4 (December 2007)

Volume 17 (2007): Edizione 3 (September 2007)
Scientific Computation for Fluid Mechanics and Hyperbolic Systems (special issue), Jan Sokołowski and Eric Sonnendrücker (Eds.)

Volume 17 (2007): Edizione 2 (June 2007)

Volume 17 (2007): Edizione 1 (March 2007)

Dettagli della rivista
Formato
Rivista
eISSN
2083-8492
Pubblicato per la prima volta
05 Apr 2007
Periodo di pubblicazione
4 volte all'anno
Lingue
Inglese

Cerca

Volume 26 (2016): Edizione 3 (September 2016)

Dettagli della rivista
Formato
Rivista
eISSN
2083-8492
Pubblicato per la prima volta
05 Apr 2007
Periodo di pubblicazione
4 volte all'anno
Lingue
Inglese

Cerca

15 Articoli
Accesso libero

Controllability criteria for time–delay fractional systems with a retarded state

Pubblicato online: 29 Sep 2016
Pagine: 521 - 531

Astratto

Abstract

The paper is concerned with time-delay linear fractional systems with multiple delays in the state. A formula for the solution of the discussed systems is presented and derived using the Laplace transform. Definitions of relative controllability with and without constraints for linear fractional systems with delays in the state are formulated. Relative controllability, both with and without constraints imposed on control values, is discussed. Various types of necessary and sufficient conditions for relative controllability and relative U-controllability are established and proved. Numerical examples illustrate the obtained theoretical results.

Parole chiave

  • fractional dynamical systems
  • controllability
  • delays in the state
  • constraints
  • pseudo-transition matrix
  • Caputo derivative
Accesso libero

Fractional descriptor continuous–time linear systems described by the Caputo–Fabrizio derivative

Pubblicato online: 29 Sep 2016
Pagine: 533 - 541

Astratto

Abstract

The Weierstrass–Kronecker theorem on the decomposition of the regular pencil is extended to fractional descriptor continuous-time linear systems described by the Caputo–Fabrizio derivative. A method for computing solutions of continuous-time systems is presented. Necessary and sufficient conditions for the positivity and stability of these systems are established. The discussion is illustrated with a numerical example.

Parole chiave

  • fractional system
  • descriptor system
  • continuous-time
  • linear system
  • Caputo–Fabrizio derivative
Accesso libero

Recursive set membership estimation for output–error fractional models with unknown–but–bounded errors

Pubblicato online: 29 Sep 2016
Pagine: 543 - 553

Astratto

Abstract

This paper presents a new formulation for set-membership parameter estimation of fractional systems. In such a context, the error between the measured data and the output model is supposed to be unknown but bounded with a priori known bounds. The bounded error is specified over measurement noise, rather than over an equation error, which is mainly motivated by experimental considerations. The proposed approach is based on the optimal bounding ellipsoid algorithm for linear output-error fractional models. A numerical example is presented to show effectiveness and discuss results.

Parole chiave

  • fractional calculus
  • set membership
  • estimation
  • unknown-but-bounded error
Accesso libero

A finite element method for extended KdV equations

Pubblicato online: 29 Sep 2016
Pagine: 555 - 567

Astratto

Abstract

The finite element method (FEM) is applied to obtain numerical solutions to a recently derived nonlinear equation for the shallow water wave problem. A weak formulation and the Petrov–Galerkin method are used. It is shown that the FEM gives a reasonable description of the wave dynamics of soliton waves governed by extended KdV equations. Some new results for several cases of bottom shapes are presented. The numerical scheme presented here is suitable for taking into account stochastic effects, which will be discussed in a subsequent paper.

Parole chiave

  • shallow water wave problem
  • nonlinear equations
  • second order KdV equations
  • finite element method
  • Petrov–Galerkin method
Accesso libero

State estimation for MISO non–linear systems in controller canonical form

Pubblicato online: 29 Sep 2016
Pagine: 569 - 583

Astratto

Abstract

We propose a new observer where the model, decomposed in generalized canonical form of regulation described by Fliess, is dissociated from the part assuring error correction. The obtained stable exact estimates give direct access to state variables in the form of successive derivatives. The dynamic response of the observer converges exponentially, as long as the nonlinearities are locally of Lipschitz type. In this case, we demonstrate that a quadratic Lyapunov function provides a number of inequalities which guarantee at least local stability. A synthesis of gains is proposed, independent of the observation time scale. Simulations of a Düffing system and a Lorenz strange attractor illustrate theoretical developments.

Parole chiave

  • non-linear systems
  • state observers
  • continuous time
Accesso libero

A double window state observer for detection and isolation of abrupt changes in parameters

Pubblicato online: 29 Sep 2016
Pagine: 585 - 602

Astratto

Abstract

The paper presents a new method for diagnosis of a process fault which takes the form of an abrupt change in some real parameter of a time-continuous linear system. The abrupt fault in the process real parameter is reflected in step changes in many parameters of the input/output model as well as in step changes in canonical state variables of the system. Detection of these state changes will enable localization of the faulty parameter in the system. For detecting state changes, a special type of exact state observer will be used. The canonical state will be represented by the derivatives of the measured output signal. Hence the exact state observer will play the role of virtual sensors for reconstruction of the derivatives of the output signal. For designing the exact state observer, the model parameters before and after the moment of fault occurrence must be known. To this end, a special identification method with modulating functions will be used. A novel concept presented in this paper concerns the structure of the observer. It will take the form of a double moving window observer which consists of two signal processing windows, each of width T. These windows are coupled to each other with a common edge. The right-hand side edge of the left-side moving window in the interval [t − 2T, t − T ] is connected to the left-hand side edge of the right-side window which operates in the interval [t − T, t]. The double observer uses different measurements of input/output signals in both the windows, and for each current time t simultaneously reconstructs two values of the state—the final value of the state in the left-side window zT (t − T) and the initial value of the state z0(t − T) in the right-side window. If the process parameters are constant, the values of both the states on the common joint edge are the same. If an abrupt change (fault) in some parameter at the moment tA = t − T occurs in the system, then step changes in some variables of the canonical state vector will also occur and the difference between the states will be detected. This will enable localization of the faulty parameter in the system.

Parole chiave

  • fault detection and isolation
  • exact state observer
  • parameter abrupt changes
  • derivative reconstruction
  • linear continuous systems
Accesso libero

A new approach to nonlinear modelling of dynamic systems based on fuzzy rules

Pubblicato online: 29 Sep 2016
Pagine: 603 - 621

Astratto

Abstract

For many practical weakly nonlinear systems we have their approximated linear model. Its parameters are known or can be determined by one of typical identification procedures. The model obtained using these methods well describes the main features of the system’s dynamics. However, usually it has a low accuracy, which can be a result of the omission of many secondary phenomena in its description. In this paper we propose a new approach to the modelling of weakly nonlinear dynamic systems. In this approach we assume that the model of the weakly nonlinear system is composed of two parts: a linear term and a separate nonlinear correction term. The elements of the correction term are described by fuzzy rules which are designed in such a way as to minimize the inaccuracy resulting from the use of an approximate linear model. This gives us very rich possibilities for exploring and interpreting the operation of the modelled system. An important advantage of the proposed approach is a set of new interpretability criteria of the knowledge represented by fuzzy rules. Taking them into account in the process of automatic model selection allows us to reach a compromise between the accuracy of modelling and the readability of fuzzy rules.

Parole chiave

  • nonlinear modelling
  • dynamic systems
  • fuzzy systems
  • interpretability of fuzzy systems
  • evolutionary algorithms
Accesso libero

Heating source localization in a reduced time

Pubblicato online: 29 Sep 2016
Pagine: 623 - 640

Astratto

Abstract

Inverse three-dimensional heat conduction problems devoted to heating source localization are ill posed. Identification can be performed using an iterative regularization method based on the conjugate gradient algorithm. Such a method is usually implemented off-line, taking into account observations (temperature measurements, for example). However, in a practical context, if the source has to be located as fast as possible (e.g., for diagnosis), the observation horizon has to be reduced. To this end, several configurations are detailed and effects of noisy observations are investigated.

Parole chiave

  • parameter identification
  • inverse heat conduction problem
  • optimal observation
  • source localization
Accesso libero

Reliability–based economic model predictive control for generalised flow–based networks including actuators’ health–aware capabilities

Pubblicato online: 29 Sep 2016
Pagine: 641 - 654

Astratto

Abstract

This paper proposes a reliability-based economic model predictive control (MPC) strategy for the management of generalised flow-based networks, integrating some ideas on network service reliability, dynamic safety stock planning, and degradation of equipment health. The proposed strategy is based on a single-layer economic optimisation problem with dynamic constraints, which includes two enhancements with respect to existing approaches. The first enhancement considers chance-constraint programming to compute an optimal inventory replenishment policy based on a desired risk acceptability level, leading to dynamical allocation of safety stocks in flow-based networks to satisfy non-stationary flow demands. The second enhancement computes a smart distribution of the control effort and maximises actuators’ availability by estimating their degradation and reliability. The proposed approach is illustrated with an application of water transport networks using the Barcelona network as the case study considered.

Parole chiave

  • model predictive control
  • flow-based networks
  • dynamic safety stocks
  • actuator health
  • service reliability
  • chance constraints
  • economic optimisation
Accesso libero

Automatic parametric fault detection in complex analog systems based on a method of minimum node selection

Pubblicato online: 29 Sep 2016
Pagine: 655 - 668

Astratto

Abstract

The aim of this paper is to introduce a strategy to find a minimal set of test nodes for diagnostics of complex analog systems with single parametric faults using the support vector machine (SVM) classifier as a fault locator. The results of diagnostics of a video amplifier and a low-pass filter using tabu search along with genetic algorithms (GAs) as node selectors in conjunction with the SVM fault classifier are presented. General principles of the diagnostic procedure are first introduced, and then the proposed approach is discussed in detail. Diagnostic results confirm the usefulness of the method and its computational requirements. Conclusions on its wider applicability are provided as well.

Parole chiave

  • complex analog systems
  • support vector machine
  • tabu search
  • genetic algorithm
  • parametric fault detection
Accesso libero

Vision based persistent localization of a humanoid robot for locomotion tasks

Pubblicato online: 29 Sep 2016
Pagine: 669 - 682

Astratto

Abstract

Typical monocular localization schemes involve a search for matches between reprojected 3D world points and 2D image features in order to estimate the absolute scale transformation between the camera and the world. Successfully calculating such transformation implies the existence of a good number of 3D points uniformly distributed as reprojected pixels around the image plane. This paper presents a method to control the march of a humanoid robot towards directions that are favorable for visual based localization. To this end, orthogonal diagonalization is performed on the covariance matrices of both sets of 3D world points and their 2D image reprojections. Experiments with the NAO humanoid platform show that our method provides persistence of localization, as the robot tends to walk towards directions that are desirable for successful localization. Additional tests demonstrate how the proposed approach can be incorporated into a control scheme that considers reaching a target position.

Parole chiave

  • robot localization
  • monocular vision
  • humanoid locomotion
Accesso libero

A new sufficient schedulability analysis for hybrid scheduling

Pubblicato online: 29 Sep 2016
Pagine: 683 - 692

Astratto

Abstract

Earliest deadline first (EDF) and fixed priority (FP) are the most commonly used and studied scheduling algorithms for real-time systems. This paper focuses on combining the EDF and FP strategies in one system. We provide a new sufficient schedulability analysis for real-time hybrid task systems which are scheduled by EDF and FP. The proposed analysis has a polynomial time complexity and no restrictions on task parameters, where the relative deadline of each task could be less than, equal to, or greater than its period. By extensive experiments, we show that our proposed analysis significantly improves the acceptance ratio compared with the existing results of the sufficient schedulability test for hybrid scheduling systems.

Parole chiave

  • scheduling algorithms
  • real-time systems
  • schedulability analysis
  • preemptive scheduling
  • earliest deadline first
  • fixed priority
Accesso libero

Scheduling preemptable jobs on identical processors under varying availability of an additional continuous resource

Pubblicato online: 29 Sep 2016
Pagine: 693 - 706

Astratto

Abstract

In this work we consider a problem of scheduling preemptable, independent jobs, characterized by the fact that their processing speeds depend on the amounts of a continuous, renewable resource allocated to jobs at a time. Jobs are scheduled on parallel, identical machines, with the criterion of minimization of the schedule length. Since two categories of resources occur in the problem: discrete (set of machines) and continuous, it is generally called a discrete-continuous scheduling problem. The model studied in this paper allows the total available amount of the continuous resource to vary over time, which is a practically important generalization that has not been considered yet for discrete-continuous scheduling problems. For this model we give some properties of optimal schedules on a basis of which we propose a general methodology for solving the considered class of problems. The methodology uses a two-phase approach in which, firstly, an assignment of machines to jobs is defined and, secondly, for this assignment an optimal continuous resource allocation is found by solving an appropriate mathematical programming problem. In the approach various cases are considered, following from assumptions made on the form of the processing speed functions of jobs. For each case an iterative algorithm is designed, leading to an optimal solution in a finite number of steps.

Parole chiave

  • machine scheduling
  • preemptable jobs
  • continuous resource
  • makespan
  • mathematical programming
Accesso libero

A scheme of resource allocation and stability for peer–to–peer file–sharing networks

Pubblicato online: 29 Sep 2016
Pagine: 707 - 719

Astratto

Abstract

Peer-to-peer (P2P) networks offer a cost-effective and easily deployable framework for sharing content. However, P2P file-sharing applications face a fundamental problem of unfairness. Pricing is regarded as an effective way to provide incentives to peers to cooperate. In this paper we propose a pricing scheme to achieve reasonable resource allocation in P2P file-sharing networks, and give an interpretation for the utility maximization problem and its sub-problems from an economic point of view. We also deduce the exact expression of optimal resource allocation for each peer, and confirm it with both simulation and optimization software. In order to realize the optimum in a decentralized architecture, we present a novel price-based algorithm and discuss its stability based on Lyapunov stability theory. Simulation results confirm that the proposed algorithm can attain an optimum within reasonable convergence times.

Parole chiave

  • peer-to-peer networks
  • fairness
  • pricing
  • stability
  • utility maximization
Accesso libero

The limit of inconsistency reduction in pairwise comparisons

Pubblicato online: 29 Sep 2016
Pagine: 721 - 729

Astratto

Abstract

This study provides a proof that the limit of a distance-based inconsistency reduction process is a matrix induced by the vector of geometric means of rows when a distance-based inconsistent pairwise comparisons matrix is transformed into a consistent PC matrix by stepwise inconsistency reduction in triads. The distance-based inconsistency indicator was defined by Koczkodaj (1993) for pairwise comparisons. Its convergence was analyzed in 1996 (regretfully, with an incomplete proof) and finally completed in 2010. However, there was no interpretation provided for the limit of convergence despite its considerable importance. This study also demonstrates that the vector of geometric means and the right principal eigenvector are linearly independent for the pairwise comparisons matrix size greater than three, although both vectors are identical (when normalized) for a consistent PC matrix of any size.

Parole chiave

  • pairwise comparison
  • inconsistency reduction
  • convergence limit
  • decision making
15 Articoli
Accesso libero

Controllability criteria for time–delay fractional systems with a retarded state

Pubblicato online: 29 Sep 2016
Pagine: 521 - 531

Astratto

Abstract

The paper is concerned with time-delay linear fractional systems with multiple delays in the state. A formula for the solution of the discussed systems is presented and derived using the Laplace transform. Definitions of relative controllability with and without constraints for linear fractional systems with delays in the state are formulated. Relative controllability, both with and without constraints imposed on control values, is discussed. Various types of necessary and sufficient conditions for relative controllability and relative U-controllability are established and proved. Numerical examples illustrate the obtained theoretical results.

Parole chiave

  • fractional dynamical systems
  • controllability
  • delays in the state
  • constraints
  • pseudo-transition matrix
  • Caputo derivative
Accesso libero

Fractional descriptor continuous–time linear systems described by the Caputo–Fabrizio derivative

Pubblicato online: 29 Sep 2016
Pagine: 533 - 541

Astratto

Abstract

The Weierstrass–Kronecker theorem on the decomposition of the regular pencil is extended to fractional descriptor continuous-time linear systems described by the Caputo–Fabrizio derivative. A method for computing solutions of continuous-time systems is presented. Necessary and sufficient conditions for the positivity and stability of these systems are established. The discussion is illustrated with a numerical example.

Parole chiave

  • fractional system
  • descriptor system
  • continuous-time
  • linear system
  • Caputo–Fabrizio derivative
Accesso libero

Recursive set membership estimation for output–error fractional models with unknown–but–bounded errors

Pubblicato online: 29 Sep 2016
Pagine: 543 - 553

Astratto

Abstract

This paper presents a new formulation for set-membership parameter estimation of fractional systems. In such a context, the error between the measured data and the output model is supposed to be unknown but bounded with a priori known bounds. The bounded error is specified over measurement noise, rather than over an equation error, which is mainly motivated by experimental considerations. The proposed approach is based on the optimal bounding ellipsoid algorithm for linear output-error fractional models. A numerical example is presented to show effectiveness and discuss results.

Parole chiave

  • fractional calculus
  • set membership
  • estimation
  • unknown-but-bounded error
Accesso libero

A finite element method for extended KdV equations

Pubblicato online: 29 Sep 2016
Pagine: 555 - 567

Astratto

Abstract

The finite element method (FEM) is applied to obtain numerical solutions to a recently derived nonlinear equation for the shallow water wave problem. A weak formulation and the Petrov–Galerkin method are used. It is shown that the FEM gives a reasonable description of the wave dynamics of soliton waves governed by extended KdV equations. Some new results for several cases of bottom shapes are presented. The numerical scheme presented here is suitable for taking into account stochastic effects, which will be discussed in a subsequent paper.

Parole chiave

  • shallow water wave problem
  • nonlinear equations
  • second order KdV equations
  • finite element method
  • Petrov–Galerkin method
Accesso libero

State estimation for MISO non–linear systems in controller canonical form

Pubblicato online: 29 Sep 2016
Pagine: 569 - 583

Astratto

Abstract

We propose a new observer where the model, decomposed in generalized canonical form of regulation described by Fliess, is dissociated from the part assuring error correction. The obtained stable exact estimates give direct access to state variables in the form of successive derivatives. The dynamic response of the observer converges exponentially, as long as the nonlinearities are locally of Lipschitz type. In this case, we demonstrate that a quadratic Lyapunov function provides a number of inequalities which guarantee at least local stability. A synthesis of gains is proposed, independent of the observation time scale. Simulations of a Düffing system and a Lorenz strange attractor illustrate theoretical developments.

Parole chiave

  • non-linear systems
  • state observers
  • continuous time
Accesso libero

A double window state observer for detection and isolation of abrupt changes in parameters

Pubblicato online: 29 Sep 2016
Pagine: 585 - 602

Astratto

Abstract

The paper presents a new method for diagnosis of a process fault which takes the form of an abrupt change in some real parameter of a time-continuous linear system. The abrupt fault in the process real parameter is reflected in step changes in many parameters of the input/output model as well as in step changes in canonical state variables of the system. Detection of these state changes will enable localization of the faulty parameter in the system. For detecting state changes, a special type of exact state observer will be used. The canonical state will be represented by the derivatives of the measured output signal. Hence the exact state observer will play the role of virtual sensors for reconstruction of the derivatives of the output signal. For designing the exact state observer, the model parameters before and after the moment of fault occurrence must be known. To this end, a special identification method with modulating functions will be used. A novel concept presented in this paper concerns the structure of the observer. It will take the form of a double moving window observer which consists of two signal processing windows, each of width T. These windows are coupled to each other with a common edge. The right-hand side edge of the left-side moving window in the interval [t − 2T, t − T ] is connected to the left-hand side edge of the right-side window which operates in the interval [t − T, t]. The double observer uses different measurements of input/output signals in both the windows, and for each current time t simultaneously reconstructs two values of the state—the final value of the state in the left-side window zT (t − T) and the initial value of the state z0(t − T) in the right-side window. If the process parameters are constant, the values of both the states on the common joint edge are the same. If an abrupt change (fault) in some parameter at the moment tA = t − T occurs in the system, then step changes in some variables of the canonical state vector will also occur and the difference between the states will be detected. This will enable localization of the faulty parameter in the system.

Parole chiave

  • fault detection and isolation
  • exact state observer
  • parameter abrupt changes
  • derivative reconstruction
  • linear continuous systems
Accesso libero

A new approach to nonlinear modelling of dynamic systems based on fuzzy rules

Pubblicato online: 29 Sep 2016
Pagine: 603 - 621

Astratto

Abstract

For many practical weakly nonlinear systems we have their approximated linear model. Its parameters are known or can be determined by one of typical identification procedures. The model obtained using these methods well describes the main features of the system’s dynamics. However, usually it has a low accuracy, which can be a result of the omission of many secondary phenomena in its description. In this paper we propose a new approach to the modelling of weakly nonlinear dynamic systems. In this approach we assume that the model of the weakly nonlinear system is composed of two parts: a linear term and a separate nonlinear correction term. The elements of the correction term are described by fuzzy rules which are designed in such a way as to minimize the inaccuracy resulting from the use of an approximate linear model. This gives us very rich possibilities for exploring and interpreting the operation of the modelled system. An important advantage of the proposed approach is a set of new interpretability criteria of the knowledge represented by fuzzy rules. Taking them into account in the process of automatic model selection allows us to reach a compromise between the accuracy of modelling and the readability of fuzzy rules.

Parole chiave

  • nonlinear modelling
  • dynamic systems
  • fuzzy systems
  • interpretability of fuzzy systems
  • evolutionary algorithms
Accesso libero

Heating source localization in a reduced time

Pubblicato online: 29 Sep 2016
Pagine: 623 - 640

Astratto

Abstract

Inverse three-dimensional heat conduction problems devoted to heating source localization are ill posed. Identification can be performed using an iterative regularization method based on the conjugate gradient algorithm. Such a method is usually implemented off-line, taking into account observations (temperature measurements, for example). However, in a practical context, if the source has to be located as fast as possible (e.g., for diagnosis), the observation horizon has to be reduced. To this end, several configurations are detailed and effects of noisy observations are investigated.

Parole chiave

  • parameter identification
  • inverse heat conduction problem
  • optimal observation
  • source localization
Accesso libero

Reliability–based economic model predictive control for generalised flow–based networks including actuators’ health–aware capabilities

Pubblicato online: 29 Sep 2016
Pagine: 641 - 654

Astratto

Abstract

This paper proposes a reliability-based economic model predictive control (MPC) strategy for the management of generalised flow-based networks, integrating some ideas on network service reliability, dynamic safety stock planning, and degradation of equipment health. The proposed strategy is based on a single-layer economic optimisation problem with dynamic constraints, which includes two enhancements with respect to existing approaches. The first enhancement considers chance-constraint programming to compute an optimal inventory replenishment policy based on a desired risk acceptability level, leading to dynamical allocation of safety stocks in flow-based networks to satisfy non-stationary flow demands. The second enhancement computes a smart distribution of the control effort and maximises actuators’ availability by estimating their degradation and reliability. The proposed approach is illustrated with an application of water transport networks using the Barcelona network as the case study considered.

Parole chiave

  • model predictive control
  • flow-based networks
  • dynamic safety stocks
  • actuator health
  • service reliability
  • chance constraints
  • economic optimisation
Accesso libero

Automatic parametric fault detection in complex analog systems based on a method of minimum node selection

Pubblicato online: 29 Sep 2016
Pagine: 655 - 668

Astratto

Abstract

The aim of this paper is to introduce a strategy to find a minimal set of test nodes for diagnostics of complex analog systems with single parametric faults using the support vector machine (SVM) classifier as a fault locator. The results of diagnostics of a video amplifier and a low-pass filter using tabu search along with genetic algorithms (GAs) as node selectors in conjunction with the SVM fault classifier are presented. General principles of the diagnostic procedure are first introduced, and then the proposed approach is discussed in detail. Diagnostic results confirm the usefulness of the method and its computational requirements. Conclusions on its wider applicability are provided as well.

Parole chiave

  • complex analog systems
  • support vector machine
  • tabu search
  • genetic algorithm
  • parametric fault detection
Accesso libero

Vision based persistent localization of a humanoid robot for locomotion tasks

Pubblicato online: 29 Sep 2016
Pagine: 669 - 682

Astratto

Abstract

Typical monocular localization schemes involve a search for matches between reprojected 3D world points and 2D image features in order to estimate the absolute scale transformation between the camera and the world. Successfully calculating such transformation implies the existence of a good number of 3D points uniformly distributed as reprojected pixels around the image plane. This paper presents a method to control the march of a humanoid robot towards directions that are favorable for visual based localization. To this end, orthogonal diagonalization is performed on the covariance matrices of both sets of 3D world points and their 2D image reprojections. Experiments with the NAO humanoid platform show that our method provides persistence of localization, as the robot tends to walk towards directions that are desirable for successful localization. Additional tests demonstrate how the proposed approach can be incorporated into a control scheme that considers reaching a target position.

Parole chiave

  • robot localization
  • monocular vision
  • humanoid locomotion
Accesso libero

A new sufficient schedulability analysis for hybrid scheduling

Pubblicato online: 29 Sep 2016
Pagine: 683 - 692

Astratto

Abstract

Earliest deadline first (EDF) and fixed priority (FP) are the most commonly used and studied scheduling algorithms for real-time systems. This paper focuses on combining the EDF and FP strategies in one system. We provide a new sufficient schedulability analysis for real-time hybrid task systems which are scheduled by EDF and FP. The proposed analysis has a polynomial time complexity and no restrictions on task parameters, where the relative deadline of each task could be less than, equal to, or greater than its period. By extensive experiments, we show that our proposed analysis significantly improves the acceptance ratio compared with the existing results of the sufficient schedulability test for hybrid scheduling systems.

Parole chiave

  • scheduling algorithms
  • real-time systems
  • schedulability analysis
  • preemptive scheduling
  • earliest deadline first
  • fixed priority
Accesso libero

Scheduling preemptable jobs on identical processors under varying availability of an additional continuous resource

Pubblicato online: 29 Sep 2016
Pagine: 693 - 706

Astratto

Abstract

In this work we consider a problem of scheduling preemptable, independent jobs, characterized by the fact that their processing speeds depend on the amounts of a continuous, renewable resource allocated to jobs at a time. Jobs are scheduled on parallel, identical machines, with the criterion of minimization of the schedule length. Since two categories of resources occur in the problem: discrete (set of machines) and continuous, it is generally called a discrete-continuous scheduling problem. The model studied in this paper allows the total available amount of the continuous resource to vary over time, which is a practically important generalization that has not been considered yet for discrete-continuous scheduling problems. For this model we give some properties of optimal schedules on a basis of which we propose a general methodology for solving the considered class of problems. The methodology uses a two-phase approach in which, firstly, an assignment of machines to jobs is defined and, secondly, for this assignment an optimal continuous resource allocation is found by solving an appropriate mathematical programming problem. In the approach various cases are considered, following from assumptions made on the form of the processing speed functions of jobs. For each case an iterative algorithm is designed, leading to an optimal solution in a finite number of steps.

Parole chiave

  • machine scheduling
  • preemptable jobs
  • continuous resource
  • makespan
  • mathematical programming
Accesso libero

A scheme of resource allocation and stability for peer–to–peer file–sharing networks

Pubblicato online: 29 Sep 2016
Pagine: 707 - 719

Astratto

Abstract

Peer-to-peer (P2P) networks offer a cost-effective and easily deployable framework for sharing content. However, P2P file-sharing applications face a fundamental problem of unfairness. Pricing is regarded as an effective way to provide incentives to peers to cooperate. In this paper we propose a pricing scheme to achieve reasonable resource allocation in P2P file-sharing networks, and give an interpretation for the utility maximization problem and its sub-problems from an economic point of view. We also deduce the exact expression of optimal resource allocation for each peer, and confirm it with both simulation and optimization software. In order to realize the optimum in a decentralized architecture, we present a novel price-based algorithm and discuss its stability based on Lyapunov stability theory. Simulation results confirm that the proposed algorithm can attain an optimum within reasonable convergence times.

Parole chiave

  • peer-to-peer networks
  • fairness
  • pricing
  • stability
  • utility maximization
Accesso libero

The limit of inconsistency reduction in pairwise comparisons

Pubblicato online: 29 Sep 2016
Pagine: 721 - 729

Astratto

Abstract

This study provides a proof that the limit of a distance-based inconsistency reduction process is a matrix induced by the vector of geometric means of rows when a distance-based inconsistent pairwise comparisons matrix is transformed into a consistent PC matrix by stepwise inconsistency reduction in triads. The distance-based inconsistency indicator was defined by Koczkodaj (1993) for pairwise comparisons. Its convergence was analyzed in 1996 (regretfully, with an incomplete proof) and finally completed in 2010. However, there was no interpretation provided for the limit of convergence despite its considerable importance. This study also demonstrates that the vector of geometric means and the right principal eigenvector are linearly independent for the pairwise comparisons matrix size greater than three, although both vectors are identical (when normalized) for a consistent PC matrix of any size.

Parole chiave

  • pairwise comparison
  • inconsistency reduction
  • convergence limit
  • decision making

Pianifica la tua conferenza remota con Sciendo