Accesso libero

Regulation of the thioredoxin-dependent system as an element of pharmacotherapy in redox-impaired diseases

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Ahsan M.K., Lekli I., Ray D., Yodoi J., Das D.K.: Redox regulation of cell survival by the thioredoxin superfamily: An implication of redox gene therapy in the heart. Antioxid. Redox Signal., 2009; 11: 2741–2758 AhsanM.K. LekliI. RayD. YodoiJ. DasD.K. Redox regulation of cell survival by the thioredoxin superfamily: An implication of redox gene therapy in the heart Antioxid. Redox Signal. 2009 11 2741 2758 10.1089/ars.2009.2683282113419583492 Search in Google Scholar

An N., Kang Y.: Thioredoxin and hematologic malignancies. W: Advances in Cancer Research, t. 122, red.: D.M. Townsend, K.D. Tew. Academic Press, London, 2014, 245–279 AnN. KangY. Thioredoxin and hematologic malignancies W: Advances in Cancer Research 122 red.: TownsendD.M. TewK.D. Academic Press London 2014 245 279 10.1016/B978-0-12-420117-0.00007-424974184 Search in Google Scholar

Arnér E.S.: Focus on mammalian thioredoxin reductases – important selenoproteins with versatile functions. Biochim. Biophys. Acta, 2009; 1790: 495–526 ArnérE.S. Focus on mammalian thioredoxin reductases – important selenoproteins with versatile functions Biochim. Biophys. Acta 2009 1790 495 526 10.1016/j.bbagen.2009.01.01419364476 Search in Google Scholar

Arnér E.S.: Selenocysteine insertion and reactivity: Mammalian thioredoxin reductases in relation to cellular redox signaling. W: Cellular Implications of Redox Signaling, red.: C. Gitler, A. Danon. Imperial College Press, London 2003, 27–45 ArnérE.S. Selenocysteine insertion and reactivity: Mammalian thioredoxin reductases in relation to cellular redox signaling W: Cellular Implications of Redox Signaling red.: GitlerC. DanonA. Imperial College Press London 2003 27 45 10.1142/9781848160033_0002 Search in Google Scholar

Avval F.Z., Holmgren A.: Molecular mechanisms of thioredoxin and glutaredoxin as hydrogen donors for Mammalian s phase ribonucleotide reductase. J. Biol. Chem., 2009; 284: 8233–8240 AvvalF.Z. HolmgrenA. Molecular mechanisms of thioredoxin and glutaredoxin as hydrogen donors for Mammalian s phase ribonucleotide reductase J. Biol. Chem. 2009 284 8233 8240 10.1074/jbc.M809338200265918019176520 Search in Google Scholar

Baker A.F., Adab K.N., Raghunand N., Chow H., Stratton S.P., Squire S.W., Boice M., Pestano L.A., Kirkpatrick D.L., Dragovich T.: A phase IB trial of 24-hour intravenous PX-12, a thioredoxin-1 inhibitor, in patients with advanced gastrointestinal cancers. Invest. New Drugs, 2013; 31: 631–641 BakerA.F. AdabK.N. RaghunandN. ChowH. StrattonS.P. SquireS.W. BoiceM. PestanoL.A. KirkpatrickD.L. DragovichT. A phase IB trial of 24-hour intravenous PX-12, a thioredoxin-1 inhibitor, in patients with advanced gastrointestinal cancers Invest. New Drugs 2013 31 631 641 10.1007/s10637-012-9846-2398898122711542 Search in Google Scholar

Baker A.F., Dragovich T., Tate W.R., Ramanathan R.K., Roe D., Hsu C.H., Kirkpatrick D.L., Powis G.: The antitumor thioredoxin-1 inhibitor PX-12 (1-methylpropyl 2-imidazolyl disulfide) decreases thioredoxin-1 and VEGF levels in cancer patient plasma. J. Lab. Clin. Med., 2006; 147: 83–90 BakerA.F. DragovichT. TateW.R. RamanathanR.K. RoeD. HsuC.H. KirkpatrickD.L. PowisG. The antitumor thioredoxin-1 inhibitor PX-12 (1-methylpropyl 2-imidazolyl disulfide) decreases thioredoxin-1 and VEGF levels in cancer patient plasma J. Lab. Clin. Med. 2006 147 83 90 10.1016/j.lab.2005.09.001143209116459166 Search in Google Scholar

Berdicevsky I., Kaufman G., Newman D.J., Horwitz B.A.: Preliminary study of activity of the thioredoxin inhibitor pleurotin against Trichophyton mentagrophytes: A novel anti-dermatophyte possibility. Mycoses, 2009; 52: 313–317 BerdicevskyI. KaufmanG. NewmanD.J. HorwitzB.A. Preliminary study of activity of the thioredoxin inhibitor pleurotin against Trichophyton mentagrophytes: A novel anti-dermatophyte possibility Mycoses 2009 52 313 317 10.1111/j.1439-0507.2008.01620.x18793260 Search in Google Scholar

Berndt C., Lillig C.H., Holmgren A.: Thioredoxins and glutaredoxins as facilitators of protein folding. Biochim. Biophys. Acta, 2008; 1783: 641–650 BerndtC. LilligC.H. HolmgrenA. Thioredoxins and glutaredoxins as facilitators of protein folding Biochim. Biophys. Acta 2008 1783 641 650 10.1016/j.bbamcr.2008.02.00318331844 Search in Google Scholar

Bignon E., Allega M.F., Lucchetta M., Tiberti M., Papaleo E.: Computational structural biology of S-nitrosylation of cancer targets. Front. Oncol., 2018; 8: 272 BignonE. AllegaM.F. LucchettaM. TibertiM. PapaleoE. Computational structural biology of S-nitrosylation of cancer targets Front. Oncol. 2018 8 272 10.3389/fonc.2018.00272610237130155439 Search in Google Scholar

Bilska A., Kryczyk A., Włodek L.: Różne oblicza biologicznej roli glutationu. Postępy Hig. Med. Dośw., 2007; 61: 438–453 BilskaA. KryczykA. WłodekL. Różne oblicza biologicznej roli glutationu Postępy Hig. Med. Dośw. 2007 61 438 453 Search in Google Scholar

Brandstaedter C., Fritz-Wolf K., Weder S., Fischer M., Hecker B., Rahlfs S., Becker K.: Kinetic characterization of wild-type and mutant human thioredoxin glutathione reductase defines its reaction and regulatory mechanisms., FEBS J., 2018; 285; 542–558 BrandstaedterC. Fritz-WolfK. WederS. FischerM. HeckerB. RahlfsS. BeckerK. Kinetic characterization of wild-type and mutant human thioredoxin glutathione reductase defines its reaction and regulatory mechanisms FEBS J. 2018 285 542 558 10.1111/febs.1435729222842 Search in Google Scholar

Cai W., Zhang B., Duan D., Wu J., Fang J.: Curcumin targeting the thioredoxin system elevates oxidative stress in HeLa cells. Toxicol. Appl. Pharmacol., 2012; 262: 341–348 CaiW. ZhangB. DuanD. WuJ. FangJ. Curcumin targeting the thioredoxin system elevates oxidative stress in HeLa cells Toxicol. Appl. Pharmacol. 2012 262 341 348 10.1016/j.taap.2012.05.01222634334 Search in Google Scholar

Chen X., Tang W., Liu S., Yu L., Chen Z.: Thioredoxin-1 phosphorylated at T100 is needed for its anti-apoptotic activity in HepG2 cancer cells. Life Sci., 2010; 87, 254–260 ChenX. TangW. LiuS. YuL. ChenZ. Thioredoxin-1 phosphorylated at T100 is needed for its anti-apoptotic activity in HepG2 cancer cells Life Sci. 2010 87 254 260 10.1016/j.lfs.2010.06.01820619274 Search in Google Scholar

Chondrogianni N., Petropoulos I., Grimm S., Georgila K., Catalgol B., Friguet B., Grune T., Gonos, E.S.: Protein damage, repair and proteolysis. Mol. Aspects Med., 2014; 35: 1–71 ChondrogianniN. PetropoulosI. GrimmS. GeorgilaK. CatalgolB. FriguetB. GruneT. GonosE.S. Protein damage, repair and proteolysis Mol. Aspects Med. 2014 35 1 71 10.1016/j.mam.2012.09.00123107776 Search in Google Scholar

Circu M.L., Aw T.Y.: Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic. Biol. Med., 2010; 48: 749–762 CircuM.L. AwT.Y. Reactive oxygen species, cellular redox systems, and apoptosis Free Radic. Biol. Med. 2010 48 749 762 10.1016/j.freeradbiomed.2009.12.022282397720045723 Search in Google Scholar

Citta A., Folda A., Scutari G., Cesaro L., Bindoli A., Rigobello, M.P.: Inhibition of thiore8doxin reductase by lanthanum chloride. J. Inorg. Biochem., 2012; 117: 18–24 CittaA. FoldaA. ScutariG. CesaroL. BindoliA. RigobelloM.P. Inhibition of thiore8doxin reductase by lanthanum chloride J. Inorg. Biochem. 2012 117 18 24 10.1016/j.jinorgbio.2012.08.01423078771 Search in Google Scholar

Collet J.F., Messens J.: Structure, function, and mechanism of thioredoxin proteins. Antioxid. Redox Signal., 2010; 13: 1205–1216 ColletJ.F. MessensJ. Structure, function, and mechanism of thioredoxin proteins Antioxid. Redox Signal. 2010 13 1205 1216 10.1089/ars.2010.311420136512 Search in Google Scholar

Cortes-Bratti X., Bassères E., Herrera-Rodriguez F., Botero-Kleiven S., Coppotelli G., Andersen J.B., Masucci M.G., Holmgren A., Chaves-Olarte E., Frisan T., Avila-Carino J.: Thioredoxin 80-activated-monocytes (TAMs) inhibit the replication of intracellular pathogens. PLoS One, 2011; 6: e16960 Cortes-BrattiX. BassèresE. Herrera-RodriguezF. Botero-KleivenS. CoppotelliG. AndersenJ.B. MasucciM.G. HolmgrenA. Chaves-OlarteE. FrisanT. Avila-CarinoJ. Thioredoxin 80-activated-monocytes (TAMs) inhibit the replication of intracellular pathogens PLoS One 2011 6 e16960 10.1371/journal.pone.0016960304181921365006 Search in Google Scholar

Cutillas N., Yellol G.S., de Haro C., Vicente C., Rodríguez V., Ruiz J.: Anticancer cyclometalated complexes of platinum group metals and gold. Coord. Chem. Rev., 2013; 257: 2784–2791 CutillasN. YellolG.S. de HaroC. VicenteC. RodríguezV. RuizJ. Anticancer cyclometalated complexes of platinum group metals and gold Coord. Chem. Rev. 2013 257 2784 2791 10.1016/j.ccr.2013.03.024 Search in Google Scholar

de Oliveira K.N., Andermark V., Onambele L.A., Dahl G., Prokop A., Ott, I.: Organotin complexes containing carboxylate ligands with maleimide and naphthalimide derived partial structures: TrxR inhibition, cytotoxicity and activity in resistant cancer cells. Eur. J. Med. Chem., 2014; 87: 794–800 de OliveiraK.N. AndermarkV. OnambeleL.A. DahlG. ProkopA. OttI. Organotin complexes containing carboxylate ligands with maleimide and naphthalimide derived partial structures: TrxR inhibition, cytotoxicity and activity in resistant cancer cells Eur. J. Med. Chem. 2014 87 794 800 10.1016/j.ejmech.2014.09.07525440880 Search in Google Scholar

Dmitrenko O., Orlova T., Terenetskaya I.: Medium controlled photochemistry of provitamin D: From solutions to liquid crystals. J. Mol. Liq., 2018; 267: 428–435 DmitrenkoO. OrlovaT. TerenetskayaI. Medium controlled photochemistry of provitamin D: From solutions to liquid crystals J. Mol. Liq. 2018 267 428 435 10.1016/j.molliq.2018.01.049 Search in Google Scholar

Dobrovolska O., Rychkov G., Shumilina E., Nerinovski K., Schmidt A., Shabalin K., Yakimov A., Dikiy A.: Structural insights into interaction between mammalian methionine sulfoxide reductase B1 and thioredoxin. J. Biomed. Biotechnol., 2012; 2012: 586539 DobrovolskaO. RychkovG. ShumilinaE. NerinovskiK. SchmidtA. ShabalinK. YakimovA. DikiyA. Structural insights into interaction between mammalian methionine sulfoxide reductase B1 and thioredoxin J. Biomed. Biotechnol. 2012 2012 586539 10.1155/2012/586539331229622505815 Search in Google Scholar

Dóka É., Pader I., Bíró A., Johansson K., Cheng Q., Ballagó K., Prigge J.R., Pastor-Flores D., Dick T.P., Schmidt E.E., Arnér E.S., Nagy P.: A novel persulfide detection method reveals protein persulfideand polysulfide-reducing functions of thioredoxin and glutathione systems. Sci. Adv., 2016; 2: e1500968 DókaÉ. PaderI. BíróA. JohanssonK. ChengQ. BallagóK. PriggeJ.R. Pastor-FloresD. DickT.P. SchmidtE.E. ArnérE.S. NagyP. A novel persulfide detection method reveals protein persulfideand polysulfide-reducing functions of thioredoxin and glutathione systems Sci. Adv. 2016 2 e1500968 10.1126/sciadv.1500968473720826844296 Search in Google Scholar

Ellgaard L. Ruddock L.W.: The human protein disulphide isomerase family: Substrate interactions and functional properties. EMBO Rep., 2005; 6: 28–32 EllgaardL. RuddockL.W. The human protein disulphide isomerase family: Substrate interactions and functional properties EMBO Rep. 2005 6 28 32 10.1038/sj.embor.7400311129922115643448 Search in Google Scholar

Fang J., Holmgren A.: Inhibition of thioredoxin and thioredoxin reductase by 4-hydroxy-2-nonenal in vitro and in vivo. J. Am. Chem. Soc., 2006; 128: 1879–1885 FangJ. HolmgrenA. Inhibition of thioredoxin and thioredoxin reductase by 4-hydroxy-2-nonenal in vitro and in vivo J. Am. Chem. Soc. 2006 128 1879 1885 10.1021/ja057358l16464088 Search in Google Scholar

Fujiwara N., Fujii T., Fujii J., Taniguchi N.: Roles of N-terminal active cysteines and C-terminal cysteine-selenocysteine in the catalytic mechanism of mammalian thioredoxin reductase. J. Biochem., 2001; 129: 803–812 FujiwaraN. FujiiT. FujiiJ. TaniguchiN. Roles of N-terminal active cysteines and C-terminal cysteine-selenocysteine in the catalytic mechanism of mammalian thioredoxin reductase J. Biochem. 2001 129 803 812 10.1093/oxfordjournals.jbchem.a00292311328605 Search in Google Scholar

Galligan J.J., Petersen D.R.: The human protein disulfide isomerase gene family. Hum. Genomics, 2012; 6: 6 GalliganJ.J. PetersenD.R. The human protein disulfide isomerase gene family Hum. Genomics 2012 6 6 10.1186/1479-7364-6-6350022623245351 Search in Google Scholar

Gandin V., Fernandes A.P.: Metal-and semimetal-containing inhibitors of thioredoxin reductase as anticancer agents. Molecules, 2015; 20: 12732–12756 GandinV. FernandesA.P. Metal-and semimetal-containing inhibitors of thioredoxin reductase as anticancer agents Molecules 2015 20 12732 12756 10.3390/molecules200712732633189526184149 Search in Google Scholar

Gaschler M.M., Stockwell B.R.: Lipid peroxidation in cell death. Biochem. Biophys. Res. Commun., 2017; 482: 419–425 GaschlerM.M. StockwellB.R. Lipid peroxidation in cell death Biochem. Biophys. Res. Commun. 2017 482 419 425 10.1016/j.bbrc.2016.10.086531940328212725 Search in Google Scholar

Ghezzi P.: Protein glutathionylation in health and disease. Biochim. Biophys. Acta, 2013; 1830: 3165–3172 GhezziP. Protein glutathionylation in health and disease Biochim. Biophys. Acta 2013 1830 3165 3172 10.1016/j.bbagen.2013.02.00923416063 Search in Google Scholar

Gil-Bea F., Akterin S., Persson T., Mateos L., Sandebring A., Avila-Cariño J., Gutierrez-Rodriguez A., Sundström E., Holmgren A., Winblad B., Cedazo-Minguez A.: Thioredoxin-80 is a product of alpha-secretase cleavage that inhibits amyloid-beta aggregation and is decreased in Alzheimer’s disease brain. EMBO Mol. Med., 2012; 4: 1097–1111 Gil-BeaF. AkterinS. PerssonT. MateosL. SandebringA. Avila-CariñoJ. Gutierrez-RodriguezA. SundströmE. HolmgrenA. WinbladB. Cedazo-MinguezA. Thioredoxin-80 is a product of alpha-secretase cleavage that inhibits amyloid-beta aggregation and is decreased in Alzheimer’s disease brain EMBO Mol. Med. 2012 4 1097 1111 10.1002/emmm.201201462349183922933306 Search in Google Scholar

Goroncy A.K., Koshiba S., Tochio N., Tomizawa T., Inoue M., Tanaka A., Sugano S., Kigawa T., Yokoyama S.: Solution structure of the C-terminal DUF1000 domain of the human thioredoxin-like 1 protein. Proteins, 2010; 78: 2176–2180 GoroncyA.K. KoshibaS. TochioN. TomizawaT. InoueM. TanakaA. SuganoS. KigawaT. YokoyamaS. Solution structure of the C-terminal DUF1000 domain of the human thioredoxin-like 1 protein Proteins 2010 78 2176 2180 10.1002/prot.2271920455272 Search in Google Scholar

Gromer S., Urig S., Becker K.: The thioredoxin system – from science to clinic. Med. Res. Rev., 2004; 24: 40–89 GromerS. UrigS. BeckerK. The thioredoxin system – from science to clinic Med. Res. Rev. 2004 24 40 89 10.1002/med.1005114595672 Search in Google Scholar

Hashemy S.I., Ungerstedt J.S., Avval F.Z., Holmgren A.: Motexafin gadolinium, a tumor-selective drug targeting thioredoxin reductase and ribonucleotide reductase. J. Biol. Chem., 2006; 281: 10691–10697 HashemyS.I. UngerstedtJ.S. AvvalF.Z. HolmgrenA. Motexafin gadolinium, a tumor-selective drug targeting thioredoxin reductase and ribonucleotide reductase J. Biol. Chem. 2006 281 10691 10697 10.1074/jbc.M51137320016481328 Search in Google Scholar

Hatahet F., Ruddock L.W.: Protein disulfide isomerase: A critical evaluation of its function in disulfide bond formation. Antioxid. Redox Signal., 2009; 11: 2807–2850 HatahetF. RuddockL.W. Protein disulfide isomerase: A critical evaluation of its function in disulfide bond formation Antioxid. Redox Signal. 2009 11 2807 2850 10.1089/ars.2009.246619476414 Search in Google Scholar

Hickey J.L., Ruhayel R.A., Barnard P.J., Baker M.V., Berners-Price S.J., Filipovska A.: Mitochondria-targeted chemotherapeutics: The rational design of gold (I) N-heterocyclic carbene complexes that are selectively toxic to cancer cells and target protein selenols in preference to thiols. J. Am. Chem. Soc., 2008; 130: 12570–12571 HickeyJ.L. RuhayelR.A. BarnardP.J. BakerM.V. Berners-PriceS.J. FilipovskaA. Mitochondria-targeted chemotherapeutics: The rational design of gold (I) N-heterocyclic carbene complexes that are selectively toxic to cancer cells and target protein selenols in preference to thiols J. Am. Chem. Soc. 2008 130 12570 12571 10.1021/ja804027j18729360 Search in Google Scholar

Holmgren A., Lu J.: Thioredoxin and thioredoxin reductase: Current research with special reference to human disease. Biochem. Biophys. Res. Commun., 2010; 396: 120–124 HolmgrenA. LuJ. Thioredoxin and thioredoxin reductase: Current research with special reference to human disease Biochem. Biophys. Res. Commun. 2010 396 120 124 10.1016/j.bbrc.2010.03.08320494123 Search in Google Scholar

Hruza L.L., Pentland A.P.: Mechanisms of UV–induced inflammation. J. Invest. Dermatol., 1993; 100: S35–S41 HruzaL.L. PentlandA.P. Mechanisms of UV–induced inflammation J. Invest. Dermatol. 1993 100 S35 S41 10.1038/jid.1993.21 Search in Google Scholar

Ishii T., Funato Y., Miki H.: Thioredoxin-related protein 32 (TRP32) specifically reduces oxidized phosphatase of regenerating liver (PRL). J. Biol. Chem., 2013; 288: 7263–7270 IshiiT. FunatoY. MikiH. Thioredoxin-related protein 32 (TRP32) specifically reduces oxidized phosphatase of regenerating liver (PRL) J. Biol. Chem. 2013 288 7263 7270 10.1074/jbc.M112.418004359163423362275 Search in Google Scholar

Jiménez A., Zu W., Rawe V.Y., Pelto-Huikko M., Flickinger C.J., Sutovsky P., Gustafsson J.Å. Oko R., Miranda-Vizuete A.: Spermatocyte/spermatid-specific thioredoxin-3, a novel Golgi apparatus-associated thioredoxin, is a specific marker of aberrant spermatogenesis. J. Biol. Chem., 2004; 279: 34971–34982 JiménezA. ZuW. RaweV.Y. Pelto-HuikkoM. FlickingerC.J. SutovskyP. GustafssonJ.Å. OkoR. Miranda-VizueteA. Spermatocyte/spermatid-specific thioredoxin-3, a novel Golgi apparatus-associated thioredoxin, is a specific marker of aberrant spermatogenesis J. Biol. Chem. 2004 279 34971 34982 10.1074/jbc.M40419220015181017 Search in Google Scholar

Jones D.A.: Rosacea, reactive oxygen species, and azelaic acid. J. Clin. Aesthet. Dermatol., 2009; 2: 26–30 JonesD.A. Rosacea, reactive oxygen species, and azelaic acid J. Clin. Aesthet. Dermatol. 2009 2 26 30 Search in Google Scholar

Ju Y., Wu L., Yang G.: Thioredoxin 1 regulation of protein S-desulfhydration. Biochem. Biophys. Rep., 2016; 5: 27–34 JuY. WuL. YangG. Thioredoxin 1 regulation of protein S-desulfhydration Biochem. Biophys. Rep. 2016 5 27 34 10.1016/j.bbrep.2015.11.012560046128955804 Search in Google Scholar

Kakkar P., Singh B.K.: Mitochondria: A hub of redox activities and cellular distress control. Mol. Cell. Biochem., 2007; 305: 235–253 KakkarP. SinghB.K. Mitochondria: A hub of redox activities and cellular distress control Mol. Cell. Biochem. 2007 305 235 253 10.1007/s11010-007-9520-817562131 Search in Google Scholar

Karlenius T.C., Tonissen, K.F.: Thioredoxin and cancer:A role for thioredoxin in all states of tumor oxygenation. Cancers, 2010; 2: 209–232 KarleniusT.C. TonissenK.F. Thioredoxin and cancer:A role for thioredoxin in all states of tumor oxygenation Cancers 2010 2 209 232 10.3390/cancers2020209383507624281068 Search in Google Scholar

Korkina L.: Metabolic and redox barriers in the skin exposed to drugs and xenobiotics. Expert Opin. Drug Metab. Toxicol., 2016; 12: 377–388 KorkinaL. Metabolic and redox barriers in the skin exposed to drugs and xenobiotics Expert Opin. Drug Metab. Toxicol. 2016 12 377 388 10.1517/17425255.2016.114956926854731 Search in Google Scholar

Lee S., Kim S.M., Lee R.T.: Thioredoxin and thioredoxin target proteins: From molecular mechanisms to functional significance. Antioxid. Redox Signal., 2013; 18: 1165–1207 LeeS. KimS.M. LeeR.T. Thioredoxin and thioredoxin target proteins: From molecular mechanisms to functional significance Antioxid. Redox Signal. 2013 18 1165 1207 10.1089/ars.2011.4322357938522607099 Search in Google Scholar

Lehmann B., Meurer M.: Vitamin D metabolism. Dermatol. Ther., 2010; 23, 2–12 LehmannB. MeurerM. Vitamin D metabolism Dermatol. Ther. 2010 23 2 12 10.1111/j.1529-8019.2009.01286.x20136904 Search in Google Scholar

Li G.Z., Liang H.F., Liao B., Zhang L., Ni Y.A., Zhou H.H., Zhang E.L., Zhang B.X., Chen X.P.: PX-12 inhibits the growth of hepatocelluar carcinoma by inducing S-phase arrest, ROS-dependent apoptosis and enhances 5-FU cytotoxicity. Am. J. Transl. Res., 2015; 7: 1528–1540 LiG.Z. LiangH.F. LiaoB. ZhangL. NiY.A. ZhouH.H. ZhangE.L. ZhangB.X. ChenX.P. PX-12 inhibits the growth of hepatocelluar carcinoma by inducing S-phase arrest, ROS-dependent apoptosis and enhances 5-FU cytotoxicity Am. J. Transl. Res. 2015 7 1528 1540 Search in Google Scholar

Li H., Xu C., Li Q., Gao X., Sugano E., Tomita H., Yang L., Shi S.: Thioredoxin 2 offers protection against mitochondrial oxidative stress in H9c2 cells and against myocardial hypertrophy induced by hyperglycemia. Int. J. Mol. Sci., 2017; 18: 1958 LiH. XuC. LiQ. GaoX. SuganoE. TomitaH. YangL. ShiS. Thioredoxin 2 offers protection against mitochondrial oxidative stress in H9c2 cells and against myocardial hypertrophy induced by hyperglycemia Int. J. Mol. Sci. 2017 18 1958 10.3390/ijms18091958561860728914755 Search in Google Scholar

Liao J., Wang K., Yao W., Yi X., Yan H., Chen M., Lan X.: Cloning, expression and antioxidant activity of a thioredoxin peroxidase from Branchiostoma belcheri tsingtaunese. PLoS One, 2017; 12: e0175162 LiaoJ. WangK. YaoW. YiX. YanH. ChenM. LanX. Cloning, expression and antioxidant activity of a thioredoxin peroxidase from Branchiostoma belcheri tsingtaunese PLoS One 2017 12 e0175162 10.1371/journal.pone.0175162538324728384204 Search in Google Scholar

Lillig C.H., Holmgren A.: Thioredoxin and related molecules – from biology to health and disease. Antioxid. Redox Signal., 2007; 9: 25–47 LilligC.H. HolmgrenA. Thioredoxin and related molecules – from biology to health and disease Antioxid. Redox Signal. 2007 9 25 47 10.1089/ars.2007.9.2517115886 Search in Google Scholar

Lu J., Papp L.V., Fang J., Rodriguez-Nieto S., Zhivotovsky B., Holmgren A.: Inhibition of mammalian thioredoxin reductase by some flavonoids: Implications for myricetin and quercetin anti-cancer activity. Cancer Res., 2006; 66: 4410–4418 LuJ. PappL.V. FangJ. Rodriguez-NietoS. ZhivotovskyB. HolmgrenA. Inhibition of mammalian thioredoxin reductase by some flavonoids: Implications for myricetin and quercetin anti-cancer activity Cancer Res. 2006 66 4410 4418 10.1158/0008-5472.CAN-05-331016618767 Search in Google Scholar

Lu Y., Wang X., Liu Z., Jin B., Chu D., Zhai H., Zhang F., Li K., Ren G., Miranda-Vizuete A., Guo X., Fan D.: Identification and distribution of thioredoxin-like 2 as the antigen for the monoclonal antibody MC3 specific to colorectal cancer. Proteomics, 2008; 8: 2220–2229 LuY. WangX. LiuZ. JinB. ChuD. ZhaiH. ZhangF. LiK. RenG. Miranda-VizueteA. GuoX. FanD. Identification and distribution of thioredoxin-like 2 as the antigen for the monoclonal antibody MC3 specific to colorectal cancer Proteomics 2008 8 2220 2229 10.1002/pmic.20070077018528843 Search in Google Scholar

Maillet A., Pervaiz S.: Redox regulation of p53, redox effectors regulated by p53: A subtle balance. Antioxid. Redox Signal., 2012; 16: 1285–1294 MailletA. PervaizS. Redox regulation of p53, redox effectors regulated by p53: A subtle balance Antioxid. Redox Signal. 2012 16 1285 1294 10.1089/ars.2011.443422117613 Search in Google Scholar

Maulik N., Das D.K.: Emerging potential of thioredoxin and thioredoxin interacting proteins in various disease conditions. Biochim. Biophys. Acta, 2008; 1780: 1368–1382 MaulikN. DasD.K. Emerging potential of thioredoxin and thioredoxin interacting proteins in various disease conditions Biochim. Biophys. Acta 2008 1780 1368 1382 10.1016/j.bbagen.2007.12.00818206121 Search in Google Scholar

Mukherjee A., Martin S.G.: The thioredoxin system: A key target in tumour and endothelial cells. Br. J. Radiol., 2008; 81: S57–S68 MukherjeeA. MartinS.G. The thioredoxin system: A key target in tumour and endothelial cells Br. J. Radiol. 2008 81 S57 S68 10.1259/bjr/3418043518819999 Search in Google Scholar

Mura P., Camalli M., Bindoli A., Sorrentino F., Casini A., Gabbiani C., Corsini M., Zanello P., Rigobello M.P., Messori L.: Activity of rat cytosolic thioredoxin reductase is strongly decreased by trans-[bis (2-amino-5-methylthiazole) tetrachlororuthenate (III)]: First report of relevant thioredoxin reductase inhibition for a ruthenium compound. J. Med. Chem., 2007; 50: 5871–5874 MuraP. CamalliM. BindoliA. SorrentinoF. CasiniA. GabbianiC. CorsiniM. ZanelloP. RigobelloM.P. MessoriL. Activity of rat cytosolic thioredoxin reductase is strongly decreased by trans-[bis (2-amino-5-methylthiazole) tetrachlororuthenate (III)]: First report of relevant thioredoxin reductase inhibition for a ruthenium compound J. Med. Chem. 2007 50 5871 5874 10.1021/jm070857817975904 Search in Google Scholar

Ng H.L., Chen S., Chew E.H., Chui W.K.: Applying the designed multiple ligands approach to inhibit dihydrofolate reductase and thioredoxin reductase for anti-proliferative activity. Eur. J. Med. Chem., 2016; 115: 63–74 NgH.L. ChenS. ChewE.H. ChuiW.K. Applying the designed multiple ligands approach to inhibit dihydrofolate reductase and thioredoxin reductase for anti-proliferative activity Eur. J. Med. Chem. 2016 115 63 74 10.1016/j.ejmech.2016.03.00226994844 Search in Google Scholar

Oehninger L., Küster L.N., Schmidt C., Muñoz-Castro A., Prokop A., Ott I.: A chemical-biological evaluation of rhodium (I) N-heterocyclic carbene complexes as prospective anticancer drugs. Chem. Eur. J., 2013; 19: 17871–17880 OehningerL. KüsterL.N. SchmidtC. Muñoz-CastroA. ProkopA. OttI. A chemical-biological evaluation of rhodium (I) N-heterocyclic carbene complexes as prospective anticancer drugs Chem. Eur. J. 2013 19 17871 17880 10.1002/chem.20130281924243420 Search in Google Scholar

Oguro A., Imaoka S.: Thioredoxin-related transmembrane protein 2 (TMX2) regulates the Ran protein gradient and importin-β-dependent nuclear cargo transport. Sci. Rep., 2019; 9: 15296 OguroA. ImaokaS. Thioredoxin-related transmembrane protein 2 (TMX2) regulates the Ran protein gradient and importin-β-dependent nuclear cargo transport Sci. Rep. 2019 9 15296 10.1038/s41598-019-51773-x681478831653923 Search in Google Scholar

Oka O.B., Bulleid N.J.: Forming disulfides in the endoplasmic reticulum. Biochim. Biophys. Acta, 2013; 1833: 2425–2429 OkaO.B. BulleidN.J. Forming disulfides in the endoplasmic reticulum Biochim. Biophys. Acta 2013 1833 2425 2429 10.1016/j.bbamcr.2013.02.00723434683 Search in Google Scholar

Orlova T.N., Terenetskaya I.P.: Possible use of provitamin D3 photoisomerization for spectral dosimetry of bioactive antirachitic UV radiation. J. Appl. Spectrosc., 2009; 76, 240–244 OrlovaT.N. TerenetskayaI.P. Possible use of provitamin D3 photoisomerization for spectral dosimetry of bioactive antirachitic UV radiation J. Appl. Spectrosc. 2009 76 240 244 10.1007/s10812-009-9159-1 Search in Google Scholar

Ortego L., Cardoso F., Martins S., Fillat M.F., Laguna A., Meireles M., Villacampa M.D., Gimeno M.C.: Strong inhibition of thioredoxin reductase by highly cytotoxic gold (I) complexes. DNA binding studies. J. Inorg. Biochem., 2014; 130: 32–37 OrtegoL. CardosoF. MartinsS. FillatM.F. LagunaA. MeirelesM. VillacampaM.D. GimenoM.C. Strong inhibition of thioredoxin reductase by highly cytotoxic gold (I) complexes. DNA binding studies J. Inorg. Biochem. 2014 130 32 37 10.1016/j.jinorgbio.2013.09.01924157605 Search in Google Scholar

Palanisamy R., Bhatt P., Kumaresan V., Chaurasia M.K., Gnanam A.J., Pasupuleti M., Kasi M., Arockiaraj J.: A redox active site containing murrel cytosolic thioredoxin: Analysis of immunological properties. Fish Shellfish Immunol., 2014; 36: 141–150 PalanisamyR. BhattP. KumaresanV. ChaurasiaM.K. GnanamA.J. PasupuletiM. KasiM. ArockiarajJ. A redox active site containing murrel cytosolic thioredoxin: Analysis of immunological properties Fish Shellfish Immunol. 2014 36 141 150 10.1016/j.fsi.2013.10.01624516870 Search in Google Scholar

Poet G.J., Oka O.B., van Lith M., Cao Z., Robinson P.J., Pringle M.A., Arnér E.S., Bulleid N.J.: Cytosolic thioredoxin reductase 1 is required for correct disulfide formation in the ER. EMBO J., 2017; 36: 693–702 PoetG.J. OkaO.B. van LithM. CaoZ. RobinsonP.J. PringleM.A. ArnérE.S. BulleidN.J. Cytosolic thioredoxin reductase 1 is required for correct disulfide formation in the ER EMBO J. 2017 36 693 702 10.15252/embj.201695336533176028093500 Search in Google Scholar

Powis G., Wipf P., Lynch S.M., Birmingham A., Kirkpatrick D.L.: Molecular pharmacology and antitumor activity of palmarumycin-based inhibitors of thioredoxin reductase. Mol. Cancer Ther., 2006; 5: 630–636 PowisG. WipfP. LynchS.M. BirminghamA. KirkpatrickD.L. Molecular pharmacology and antitumor activity of palmarumycin-based inhibitors of thioredoxin reductase Mol. Cancer Ther. 2006 5 630 636 10.1158/1535-7163.MCT-05-0487146292516546977 Search in Google Scholar

Prast-Nielsen S., Huang H.H., Williams, D.L.: Thioredoxin glutathione reductase: Its role in redox biology and potential as a target for drugs against neglected diseases. Biochim. Biophys. Acta, 2011; 1810: 1262–1271 Prast-NielsenS. HuangH.H. WilliamsD.L. Thioredoxin glutathione reductase: Its role in redox biology and potential as a target for drugs against neglected diseases Biochim. Biophys. Acta 2011 1810 1262 1271 10.1016/j.bbagen.2011.06.024321093421782895 Search in Google Scholar

Ramanathan R.K., Stephenson J.J., Weiss G.J., Pestano L.A., Lowe A., Hiscox A., Leos R.A., Martin J.C., Kirkpatrick L., Richards D.A.: A phase I trial of PX-12, a small-molecule inhibitor of thioredoxin-1, administered as a 72-hour infusion every 21 days in patients with advanced cancers refractory to standard therapy. Invest. New Drugs, 2012; 30: 1591–1596 RamanathanR.K. StephensonJ.J. WeissG.J. PestanoL.A. LoweA. HiscoxA. LeosR.A. MartinJ.C. KirkpatrickL. RichardsD.A. A phase I trial of PX-12, a small-molecule inhibitor of thioredoxin-1, administered as a 72-hour infusion every 21 days in patients with advanced cancers refractory to standard therapy Invest. New Drugs 2012 30 1591 1596 10.1007/s10637-011-9739-921863237 Search in Google Scholar

Raninga P.V., Di Trapani G., Vuckovic S., Bhatia M., Tonissen K.F.: Inhibition of thioredoxin 1 leads to apoptosis in drug-resistant multiple myeloma. Oncotarget, 2015; 6: 15410–15424 RaningaP.V. Di TrapaniG. VuckovicS. BhatiaM. TonissenK.F. Inhibition of thioredoxin 1 leads to apoptosis in drug-resistant multiple myeloma Oncotarget 2015 6 15410 15424 10.18632/oncotarget.3795455816025945832 Search in Google Scholar

Ren X., Zou L., Lu J., Holmgren A.: Selenocysteine in mammalian thioredoxin reductase and application of ebselen as a therapeutic. Free Radic. Biol. Med., 2018; 127: 238–247 RenX. ZouL. LuJ. HolmgrenA. Selenocysteine in mammalian thioredoxin reductase and application of ebselen as a therapeutic Free Radic. Biol. Med. 2018 127 238 247 10.1016/j.freeradbiomed.2018.05.08129807162 Search in Google Scholar

Ren X., Zou L., Zhang X., Branco V., Wang J., Carvalho C., Holmgren A., Lu J.: Redox signaling mediated by thioredoxin and glutathione systems in the central nervous system. Antioxid. Redox Signal., 2017; 27: 989–1010 RenX. ZouL. ZhangX. BrancoV. WangJ. CarvalhoC. HolmgrenA. LuJ. Redox signaling mediated by thioredoxin and glutathione systems in the central nervous system Antioxid. Redox Signal. 2017 27 989 1010 10.1089/ars.2016.6925564912628443683 Search in Google Scholar

Rendón J.L., Miranda-Leyva M., Guevara-Flores A., Martínez-González J.J., Del Arenal I.P., Flores-Herrera O., Pardo J.P.: Insight into the mechanistic basis of the hysteretic-like kinetic behavior of thioredoxin-glutathione reductase (TGR). Enzyme Res., 2018; 2018: 3215462 RendónJ.L. Miranda-LeyvaM. Guevara-FloresA. Martínez-GonzálezJ.J. Del ArenalI.P. Flores-HerreraO. PardoJ.P. Insight into the mechanistic basis of the hysteretic-like kinetic behavior of thioredoxin-glutathione reductase (TGR) Enzyme Res. 2018 2018 3215462 10.1155/2018/3215462614515530254758 Search in Google Scholar

Rhee S.G.: Overview on peroxiredoxin. Mol. Cells, 2016; 39: 1–5 RheeS.G. Overview on peroxiredoxin Mol. Cells 2016 39 1 5 10.14348/molcells.2016.2368474986826831451 Search in Google Scholar

Rhee S.G., Woo H.A., Kil I.S., Bae S.H.: Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides. J. Biol. Chem., 2012; 287: 4403–4410 RheeS.G. WooH.A. KilI.S. BaeS.H. Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides J. Biol. Chem. 2012 287 4403 4410 10.1074/jbc.R111.283432328160722147704 Search in Google Scholar

Rodriguez-Garcia A., Hevia D., Mayo J.C., Gonzalez-Menendez P., Coppo L., Lu J., Holmgren A., Sainz R.M.: Thioredoxin 1 modulates apoptosis induced by bioactive compounds in prostate cancer cells. Redox Biol., 2017; 12: 634–647 Rodriguez-GarciaA. HeviaD. MayoJ.C. Gonzalez-MenendezP. CoppoL. LuJ. HolmgrenA. SainzR.M. Thioredoxin 1 modulates apoptosis induced by bioactive compounds in prostate cancer cells Redox Biol. 2017 12 634 647 10.1016/j.redox.2017.03.025538562228391184 Search in Google Scholar

Roos G., Foloppe N., Van Laer K., Wyns L., Nilsson L., Geerlings P., Messens J.: How thioredoxin dissociates its mixed disulfide. PLoS Comput. Biol., 2009; 5: e1000461 RoosG. FoloppeN. Van LaerK. WynsL. NilssonL. GeerlingsP. MessensJ. How thioredoxin dissociates its mixed disulfide PLoS Comput. Biol. 2009 5 e1000461 10.1371/journal.pcbi.1000461271418119675666 Search in Google Scholar

Saccoccia, F., Angelucci F., Boumis G., Carotti D., Desiato G., Miele A.E., Bellelli A.: Thioredoxin reductase and its inhibitors. Curr. Protein Pept. Sci., 2014; 15, 621–646 SaccocciaF. AngelucciF. BoumisG. CarottiD. DesiatoG. MieleA.E. BellelliA. Thioredoxin reductase and its inhibitors Curr. Protein Pept. Sci. 2014 15 621 646 10.2174/1389203715666140530091910427583624875642 Search in Google Scholar

Sandargo B., Thongbai B., Praditya D., Steinmann E., Stadler M., Surup F.: Antiviral 4-hydroxypleurogrisein and antimicrobial pleurotin derivatives from cultures of the nematophagous basidiomycete Hohenbuehelia grisea. Molecules, 2018; 23: 2697 SandargoB. ThongbaiB. PradityaD. SteinmannE. StadlerM. SurupF. Antiviral 4-hydroxypleurogrisein and antimicrobial pleurotin derivatives from cultures of the nematophagous basidiomycete Hohenbuehelia grisea Molecules 2018 23 2697 10.3390/molecules23102697622266030347707 Search in Google Scholar

Sugiura Y., Araki K., Iemura S.I., Natsume T., Hoseki J., Nagata, K.: Novel thioredoxin-related transmembrane protein TMX4 has reductase activity. J. Biol. Chem., 2010; 285: 7135–7142 SugiuraY. ArakiK. IemuraS.I. NatsumeT. HosekiJ. NagataK. Novel thioredoxin-related transmembrane protein TMX4 has reductase activity J. Biol. Chem. 2010 285 7135 7142 10.1074/jbc.M109.082545284416320056998 Search in Google Scholar

Sweeney M., Coyle R., Kavanagh P., Berezin A.A., Re D.L., Zissimou G.A., Koutentis P.A., Carty M.P., Aldabbagh F.: Discovery of anti-cancer activity for benzo [1,2,4] triazin-7-ones: Very strong correlation to pleurotin and thioredoxin reductase inhibition. Bioorg. Med. Chem., 2016; 24: 3565–3570 SweeneyM. CoyleR. KavanaghP. BerezinA.A. ReD.L. ZissimouG.A. KoutentisP.A. CartyM.P. AldabbaghF. Discovery of anti-cancer activity for benzo [1,2,4] triazin-7-ones: Very strong correlation to pleurotin and thioredoxin reductase inhibition Bioorg. Med. Chem. 2016 24 3565 3570 10.1016/j.bmc.2016.05.06627290691 Search in Google Scholar

Tan S.X., Greetham D., Raeth S., Grant C.M., Dawes I.W., Perrone G.G.: The thioredoxin-thioredoxin reductase system can function in vivo as an alternative system to reduce oxidized glutathione in Saccharomyces cerevisiae. J. Biol. Chem., 2010; 285: 6118–6126 TanS.X. GreethamD. RaethS. GrantC.M. DawesI.W. PerroneG.G. The thioredoxin-thioredoxin reductase system can function in vivo as an alternative system to reduce oxidized glutathione in Saccharomyces cerevisiae J. Biol. Chem. 2010 285 6118 6126 10.1074/jbc.M109.062844282540619951944 Search in Google Scholar

Toledano M.B., Delaunay-Moisan A., Outten C.E., Igbaria A.: Functions and cellular compartmentation of the thioredoxin and glutathione pathways in yeast. Antioxid. Redox Signal., 2013; 18: 1699–1711 ToledanoM.B. Delaunay-MoisanA. OuttenC.E. IgbariaA. Functions and cellular compartmentation of the thioredoxin and glutathione pathways in yeast Antioxid. Redox Signal. 2013 18 1699 1711 10.1089/ars.2012.5033377155023198979 Search in Google Scholar

Tonissen K.F., Di Trapani G.: Thioredoxin system inhibitors as mediators of apoptosis for cancer therapy. Mol. Nutr. Food Res., 2009; 53: 87–103 TonissenK.F. Di TrapaniG. Thioredoxin system inhibitors as mediators of apoptosis for cancer therapy Mol. Nutr. Food Res. 2009 53 87 103 10.1002/mnfr.20070049218979503 Search in Google Scholar

Ukuwela A.A., Bush A.I., Wedd A.G., Xiao Z.: Glutaredoxins employ parallel monothiol-dithiol mechanisms to catalyze thioldisulfide exchanges with protein disulfides. Chem. Sci., 2018; 9: 1173–1183 UkuwelaA.A. BushA.I. WeddA.G. XiaoZ. Glutaredoxins employ parallel monothiol-dithiol mechanisms to catalyze thioldisulfide exchanges with protein disulfides Chem. Sci. 2018 9 1173 1183 10.1039/C7SC04416J588559329675162 Search in Google Scholar

Vandervore L.V., Schot R., Milanese C., Smits D.J., Kasteleijn E., Fry A.E., Pilz D.T., Brock S., Börklü-Yücel E., Post M., Bahi-Buisson N., Sánchez-Soler M.J., van Slegtenhors M., Keren B., Afenjar A. i wsp.: TMX2 is a crucial regulator of cellular redox state, and its dysfunction causes severe brain developmental abnormalities. Am. J. Hum. Genet, 2019; 105: 1126–1147 VandervoreL.V. SchotR. MilaneseC. SmitsD.J. KasteleijnE. FryA.E. PilzD.T. BrockS. Börklü-YücelE. PostM. Bahi-BuissonN. Sánchez-SolerM.J. van SlegtenhorsM. KerenB. AfenjarA. TMX2 is a crucial regulator of cellular redox state, and its dysfunction causes severe brain developmental abnormalities Am. J. Hum. Genet 2019 105 1126 1147 10.1016/j.ajhg.2019.10.009690480431735293 Search in Google Scholar

Watanabe R., Nakamura H., Masutani H., Yodoi J.: Anti-oxidative, anti-cancer and anti-inflammatory actions by thioredoxin 1 and thioredoxin-binding protein-2. Pharmacol. Ther., 2010; 127: 261–270 WatanabeR. NakamuraH. MasutaniH. YodoiJ. Anti-oxidative, anti-cancer and anti-inflammatory actions by thioredoxin 1 and thioredoxin-binding protein-2 Pharmacol. Ther. 2010 127 261 270 10.1016/j.pharmthera.2010.04.00420435060 Search in Google Scholar

Wu C., Parrott A.M., Fu C., Liu T., Marino S.M., Gladyshev V.N., Jain M.R., Baykal A.T., Li Q., Oka S., Sadoshima J., Beuve A., Simmons W.J., Li H.: Thioredoxin 1-mediated post-translational modifications: Reduction, transnitrosylation, denitrosylation, and related proteomics methodologies. Antioxid. Redox Signal., 2011; 15: 2565–2604 WuC. ParrottA.M. FuC. LiuT. MarinoS.M. GladyshevV.N. JainM.R. BaykalA.T. LiQ. OkaS. SadoshimaJ. BeuveA. SimmonsW.J. LiH. Thioredoxin 1-mediated post-translational modifications: Reduction, transnitrosylation, denitrosylation, and related proteomics methodologies Antioxid. Redox Signal. 2011 15 2565 2604 10.1089/ars.2010.3831317634821453190 Search in Google Scholar

Yoshioka J.: Thioredoxin superfamily and its effects on cardiac physiology and pathology. Compr. Physiol., 2011; 5: 513–530 YoshiokaJ. Thioredoxin superfamily and its effects on cardiac physiology and pathology Compr. Physiol. 2011 5 513 530 10.1002/cphy.c14004225880503 Search in Google Scholar

Zeng H.H., Wang L.H.: Targeting thioredoxin reductase: Anticancer agents and chemopreventive compounds. Med. Chem., 2010; 6: 286–297 ZengH.H. WangL.H. Targeting thioredoxin reductase: Anticancer agents and chemopreventive compounds Med. Chem. 2010 6 286 297 10.2174/15734061079335886420977412 Search in Google Scholar

Zhang J., Zhang B., Li X., Han X., Liu R., Fang J.: Small molecule inhibitors of mammalian thioredoxin reductase as potential anti-cancer agents: An update. Med. Res. Rev., 2019; 39: 5–39 ZhangJ. ZhangB. LiX. HanX. LiuR. FangJ. Small molecule inhibitors of mammalian thioredoxin reductase as potential anti-cancer agents: An update Med. Res. Rev. 2019 39 5 39 10.1002/med.2150729727025 Search in Google Scholar

Zhang J.J., Muenzner J.K., Abu El Maaty M.A., Karge B., Schobert R., Wölfl S., Ott I.: A multi-target caffeine derived rhodium (I) N-heterocyclic carbene complex: Evaluation of the mechanism of action. Dalton Trans., 2016; 45: 13161–13168 ZhangJ.J. MuenznerJ.K. Abu El MaatyM.A. KargeB. SchobertR. WölflS. OttI. A multi-target caffeine derived rhodium (I) N-heterocyclic carbene complex: Evaluation of the mechanism of action Dalton Trans. 2016 45 13161 13168 10.1039/C6DT02025A27334935 Search in Google Scholar

Zhu H., Tao X., Zhou L., Sheng B., Zhu X., Zhu X.: Expression of thioredoxin 1 and peroxiredoxins in squamous cervical carcinoma and its predictive role in NACT. BMC Cancer, 2019; 19: 865 ZhuH. TaoX. ZhouL. ShengB. ZhuX. ZhuX. Expression of thioredoxin 1 and peroxiredoxins in squamous cervical carcinoma and its predictive role in NACT BMC Cancer 2019 19 865 10.1186/s12885-019-6046-x671683831470801 Search in Google Scholar

eISSN:
1732-2693
Lingua:
Inglese
Frequenza di pubblicazione:
Volume Open
Argomenti della rivista:
Life Sciences, Molecular Biology, Microbiology and Virology, Medicine, Basic Medical Science, Immunology