National Health Commission (NHC) Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy Fudan UniversityShanghai, P.R. China
National Health Commission (NHC) Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy Fudan UniversityShanghai, P.R. China
National Health Commission (NHC) Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy Fudan UniversityShanghai, P.R. China
School of Health Science and Engineering, University of Shanghai for Science and TechnologyShanghai, P.R. China
National Health Commission (NHC) Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy Fudan UniversityShanghai, P.R. China
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Aakko J, Pietilä S, Toivonen R, Rokka A, Mokkala K, Laitinen K, Elo L, Hänninen A. A carbohydrate-active enzyme (CAZy) profile links successful metabolic specialization of Prevotella to its abundance in gut microbiota. Sci Rep. 2020;10(1):12411. https://doi.org/10.1038/s41598-020-69241-2AakkoJPietiläSToivonenRRokkaAMokkalaKLaitinenKEloLHänninenA.A carbohydrate-active enzyme (CAZy) profile links successful metabolic specialization of Prevotella to its abundance in gut microbiota. Sci Rep. 2020;10(1):12411. https://doi.org/10.1038/s41598-020-69241-2Search in Google Scholar
Abeli T, Dalrymple S, Godefroid S, Mondoni A, Müller JV, Rossi G, Orsenigo S. Ex situ collections and their potential for the restoration of extinct plants. Conserv Biol. 2020;34(2):303–313. https://doi.org/10.1111/cobi.13391AbeliTDalrympleSGodefroidSMondoniAMüllerJVRossiGOrsenigoS.Ex situ collections and their potential for the restoration of extinct plants. Conserv Biol. 2020;34(2):303–313. https://doi.org/10.1111/cobi.13391Search in Google Scholar
Accetto T, Avguštin G. The diverse and extensive plant polysaccharide degradative apparatuses of the rumen and hindgut Prevotella species: A factor in their ubiquity? Syst Appl Microbiol. 2019;42(2):107–116. https://doi.org/10.1016/j.syapm.2018.10.001AccettoTAvguštinG.The diverse and extensive plant polysaccharide degradative apparatuses of the rumen and hindgut Prevotella species: A factor in their ubiquity?Syst Appl Microbiol. 2019;42(2):107–116. https://doi.org/10.1016/j.syapm.2018.10.001Search in Google Scholar
Altschul DM, Wallace EK, Sonnweber R, Tomonaga M, Weiss A. Chimpanzee intellect: Personality, performance and motivation with touchscreen tasks. R Soc Open Sci. 2017;4(5):170169. https://doi.org/10.1098/rsos.170169AltschulDMWallaceEKSonnweberRTomonagaMWeissA.Chimpanzee intellect: Personality, performance and motivation with touchscreen tasks. R Soc Open Sci. 2017;4(5):170169. https://doi.org/10.1098/rsos.170169Search in Google Scholar
Amato KR, Lake BR, Ozminkowski S, Jiang H, Moy M, Sardaro MLS, Fultz A, Hopper LM. Exploring the utility of the gut microbiome as a longitudinal health monitoring tool in sanctuary chimpanzees (Pan troglodytes). Am J Primatol. 2025;87(3):e70004. https://doi.org/10.1002/ajp.70004AmatoKRLakeBROzminkowskiSJiangHMoyMSardaroMLSFultzAHopperLM.Exploring the utility of the gut microbiome as a longitudinal health monitoring tool in sanctuary chimpanzees (Pan troglodytes). Am J Primatol. 2025;87(3):e70004. https://doi.org/10.1002/ajp.70004Search in Google Scholar
Aragón-Vela J, Solis-Urra P, Ruiz-Ojeda FJ, Álvarez-Mercado AI, Olivares-Arancibia J, Plaza-Diaz J. Impact of exercise on gut microbiota in obesity. Nutrients. 2021;13(11):3999. https://doi.org/10.3390/nu13113999Aragón-VelaJSolis-UrraPRuiz-OjedaFJÁlvarez-MercadoAIOlivares-ArancibiaJPlaza-DiazJ.Impact of exercise on gut microbiota in obesity. Nutrients. 2021;13(11):3999. https://doi.org/10.3390/nu13113999Search in Google Scholar
AZA Ape TAG. Chimpanzee (Pan troglodytes) care manual. Silver Spring (USA): Association of Zoos and Aquariums; 2010.AZA ApeTAG.Chimpanzee (Pan troglodytes) care manual. Silver Spring (USA): Association of Zoos and Aquariums; 2010.Search in Google Scholar
Bakour S, Rathored J, Lo CI, Mediannikov O, Beye M, Ehounoud CB, Biagini P, Raoult D, Fournier PE, Fenollar F. Non-contiguous finished genome sequence and description of Streptococcus varani sp. nov. New Microbes New Infect. 2016;11:93–102. https://doi.org/10.1016/j.nmni.2016.03.004BakourSRathoredJLoCIMediannikovOBeyeMEhounoudCBBiaginiPRaoultDFournierPEFenollarF.Non-contiguous finished genome sequence and description of Streptococcus varani sp. nov. New Microbes New Infect. 2016;11:93–102. https://doi.org/10.1016/j.nmni.2016.03.004Search in Google Scholar
Baniel A, Petrullo L, Mercer A, Reitsema L, Sams S, Beehner JC, Bergman TJ, Snyder-Mackler N, Lu A. Maternal effects on early-life gut microbiota maturation in a wild nonhuman primate. Curr Biol. 2022;32(20):4508–4520.e6. https://doi.org/10.1016/j.cub.2022.08.037BanielAPetrulloLMercerAReitsemaLSamsSBeehnerJCBergmanTJSnyder-MacklerNLuA.Maternal effects on early-life gut microbiota maturation in a wild nonhuman primate. Curr Biol. 2022;32(20):4508–4520.e6. https://doi.org/10.1016/j.cub.2022.08.037Search in Google Scholar
Cabana F, Jasmi R, Maguire R. Great ape nutrition: low-sugar and high-fibre diets can lead to increased natural behaviours, decreased regurgitation and reingestion, and reversal of prediabetes. Int. Zoo Yb. 2018;52:48–61. https://doi.org/10.1111/izy.12172CabanaFJasmiRMaguireR.Great ape nutrition: low-sugar and high-fibre diets can lead to increased natural behaviours, decreased regurgitation and reingestion, and reversal of prediabetes. Int. Zoo Yb. 2018;52:48–61. https://doi.org/10.1111/izy.12172Search in Google Scholar
Campbell TP, Sun X, Patel VH, Sanz C, Morgan D, Dantas G. The microbiome and resistome of chimpanzees, gorillas, and humans across host lifestyle and geography. ISME J. 2020;14(6):1584– 1599. https://doi.org/10.1038/s41396-020-0634-2CampbellTPSunXPatelVHSanzCMorganDDantasG.The microbiome and resistome of chimpanzees, gorillas, and humans across host lifestyle and geography. ISME J. 2020;14(6):1584– 1599. https://doi.org/10.1038/s41396-020-0634-2Search in Google Scholar
Cantwell A, Buckholtz JW, Atencia R, Rosati AG. The origins of cognitive flexibility in chimpanzees. Dev Sci. 2022 Sep;25(5):e13266. https://doi.org/10.1111/desc.1326CantwellABuckholtzJWAtenciaRRosatiAG.The origins of cognitive flexibility in chimpanzees. Dev Sci. 2022Sep;25(5):e13266. https://doi.org/10.1111/desc.1326Search in Google Scholar
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010 May;7(5):335–336. https://doi.org/10.1038/nmeth.f.303CaporasoJGKuczynskiJStombaughJBittingerKBushmanFDCostelloEKFiererNPeñaAGGoodrichJKGordonJIQIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010May;7(5):335–336. https://doi.org/10.1038/nmeth.f.303Search in Google Scholar
Carlsen F, de Jongh T, Pluháčková J. EAZA best practice guidelines for chimpanzees (Pan troglodytes) – 1st edition. Amsterdam (The Netherlands): European Association of Zoos and Aquariums; 2022. https://doi.org/10.61024/BPG2022ChimpanzeesENCarlsenFde JonghTPluháčkováJ.EAZA best practice guidelines for chimpanzees (Pan troglodytes) – 1st edition. Amsterdam (The Netherlands): European Association of Zoos and Aquariums; 2022. https://doi.org/10.61024/BPG2022ChimpanzeesENSearch in Google Scholar
Clayton JB, Vangay P, Huang H, Ward T, Hillmann BM, Al-Ghalith GA, Travis DA, Long HT, Tuan BV, Minh VV, et al. Captivity humanizes the primate microbiome. Proc Natl Acad Sci USA. 2016;113(37):10376–10381. https://doi.org/10.1073/pnas.1521835113ClaytonJBVangayPHuangHWardTHillmannBMAl-GhalithGATravisDALongHTTuanBVMinhVVCaptivity humanizes the primate microbiome. Proc Natl Acad Sci USA. 2016;113(37):10376–10381. https://doi.org/10.1073/pnas.1521835113Search in Google Scholar
Costantini D, Masi S, Rachid L, Beltrame M, Rohmer M, Krief S. Mind the food: rapid changes in antioxidant content of diet affect oxidative status of chimpanzees. Am J Physiol Regul Integr Comp Physiol. 2021;320(5):R728–R734. https://doi.org/10.1152/ajpregu.00003.2021CostantiniDMasiSRachidLBeltrameMRohmerMKriefS.Mind the food: rapid changes in antioxidant content of diet affect oxidative status of chimpanzees. Am J Physiol Regul Integr Comp Physiol. 2021;320(5):R728–R734. https://doi.org/10.1152/ajpregu.00003.2021Search in Google Scholar
Degnan PH, Pusey AE, Lonsdorf EV, Goodall J, Wroblewski EE, Wilson ML, Rudicell RS, Hahn BH, Ochman H. Factors associated with the diversification of the gut microbial communities within chimpanzees from Gombe National Park. Proc Natl Acad Sci USA. 2012;109(32):13034–13039. https://doi.org/10.1073/pnas.1110994109DegnanPHPuseyAELonsdorfEVGoodallJWroblewskiEEWilsonMLRudicellRSHahnBHOchmanH.Factors associated with the diversification of the gut microbial communities within chimpanzees from Gombe National Park. Proc Natl Acad Sci USA. 2012;109(32):13034–13039. https://doi.org/10.1073/pnas.1110994109Search in Google Scholar
Dias BDC, Lamarca AP, Machado DT, Kloh VP, de Carvalho FM, Vasconcelos ATR. Metabolic pathways associated with Firmicutes prevalence in the gut of multiple livestock animals and humans. Anim Microbiome. 2025;7(1):20. https://doi.org/10.1186/s42523-025-00379-yDiasBDCLamarcaAPMachadoDTKlohVPde CarvalhoFMVasconcelosATR.Metabolic pathways associated with Firmicutes prevalence in the gut of multiple livestock animals and humans. Anim Microbiome. 2025;7(1):20. https://doi.org/10.1186/s42523-025-00379-ySearch in Google Scholar
Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013 Oct;10(10):996–998. https://doi.org/10.1038/nmeth.2604EdgarRC.UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013Oct;10(10):996–998. https://doi.org/10.1038/nmeth.2604Search in Google Scholar
El Kaoutari A, Armougom F, Gordon JI, Raoult D, Henrissat B. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat Rev Microbiol. 2013;11(7):497–504. https://doi.org/10.1038/nrmicro3050El KaoutariAArmougomFGordonJIRaoultDHenrissatB.The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat Rev Microbiol. 2013;11(7):497–504. https://doi.org/10.1038/nrmicro3050Search in Google Scholar
Fu L, Lou Y, Guo Y, Zhou F, Ma J, Wang S, Gu Y, Fu B, Lu W. Seminal plasma microbiomes, sperm parameters, and cryopreservation in a healthy fertile population. Front Microbiol. 2024;15:1401326. https://doi.org/10.3389/fmicb.2024.1401326FuLLouYGuoYZhouFMaJWangSGuYFuBLuW.Seminal plasma microbiomes, sperm parameters, and cryopreservation in a healthy fertile population. Front Microbiol. 2024;15:1401326. https://doi.org/10.3389/fmicb.2024.1401326Search in Google Scholar
Goodall J. The chimpanzees of Gombe: patterns of behavior. Cambridge (USA): Harvard University Press; 1986.GoodallJ.The chimpanzees of Gombe: patterns of behavior. Cambridge (USA): Harvard University Press; 1986.Search in Google Scholar
Koliada A, Syzenko G, Moseiko V, Budovska L, Puchkov K, Perederiy V, Gavalko Y, Dorofeyev A, Romanenko M, Tkach S, et al. Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiol. 2017;17(1):120. https://doi.org/10.1186/s12866-017-1027-1KoliadaASyzenkoGMoseikoVBudovskaLPuchkovKPerederiyVGavalkoYDorofeyevARomanenkoMTkachSAssociation between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiol. 2017;17(1):120. https://doi.org/10.1186/s12866-017-1027-1Search in Google Scholar
Komodromou I, Andreou E, Vlahoyiannis A, Christofidou M, Felekkis K, Pieri M, Giannaki CD. Exploring the dynamic relationship between the gut microbiome and body composition across the human lifespan: A systematic review. Nutrients. 2024;16(5):660. https://doi.org/10.3390/nu16050660KomodromouIAndreouEVlahoyiannisAChristofidouMFelekkisKPieriMGiannakiCD.Exploring the dynamic relationship between the gut microbiome and body composition across the human lifespan: A systematic review. Nutrients. 2024;16(5):660. https://doi.org/10.3390/nu16050660Search in Google Scholar
Kovatcheva-Datchary P, Nilsson A, Akrami R, Lee YS, De Vadder F, Arora T, Hallen A, Martens E, Björck I, Bäckhed F. Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella. Cell Metab. 2015;22(6):971–982. https://doi.org/10.1016/j.cmet.2015.10.001Kovatcheva-DatcharyPNilssonAAkramiRLeeYSDe VadderFAroraTHallenAMartensEBjörckIBäckhedF.Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella. Cell Metab. 2015;22(6):971–982. https://doi.org/10.1016/j.cmet.2015.10.001Search in Google Scholar
Le HH, Lee MT, Besler KR, Comrie JMC, Johnson EL. Characterization of interactions of dietary cholesterol with the murine and human gut microbiome. Nat Microbiol. 2022;7(9):1390–1403. https://doi.org/10.1038/s41564-022-01195-9LeHHLeeMTBeslerKRComrieJMCJohnsonEL.Characterization of interactions of dietary cholesterol with the murine and human gut microbiome. Nat Microbiol. 2022;7(9):1390–1403. https://doi.org/10.1038/s41564-022-01195-9Search in Google Scholar
Li Y, Xu X, Guo Z, Li Q, Wang Y, Jian D, Zhang G, Tian X, Chen S, Luo Z. Neonatal Streptococcus pneumoniae infection induces long-lasting dysbiosis of the gut microbiota in a mouse model. Front Microbiol. 2022;13:961684. https://doi.org/10.3389/fmicb.2022.961684LiYXuXGuoZLiQWangYJianDZhangGTianXChenSLuoZ.Neonatal Streptococcus pneumoniae infection induces long-lasting dysbiosis of the gut microbiota in a mouse model. Front Microbiol. 2022;13:961684. https://doi.org/10.3389/fmicb.2022.961684Search in Google Scholar
Litty D, Müller V. Butyrate production in the acetogen Eubacterium limosum is dependent on the carbon and energy source. Microb Biotechnol. 2021;14(6):2686–2692. https://doi.org/10.1111/1751-7915.13779LittyDMüllerV.Butyrate production in the acetogen Eubacterium limosum is dependent on the carbon and energy source. Microb Biotechnol. 2021;14(6):2686–2692. https://doi.org/10.1111/1751-7915.13779Search in Google Scholar
Louis P, Flint HJ. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett. 2009;294(1):1–8. https://doi.org/10.1111/j.1574-6968.2009.01514.xLouisPFlintHJ.Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett. 2009;294(1):1–8. https://doi.org/10.1111/j.1574-6968.2009.01514.xSearch in Google Scholar
Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011 Nov;27(21):2957–2963. https://doi.org/10.1093/bioinformatics/btr507MagočTSalzbergSL.FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011Nov;27(21):2957–2963. https://doi.org/10.1093/bioinformatics/btr507Search in Google Scholar
Moeller AH, Ochman H. Factors that drive variation among gut microbial communities. Gut Microbes. 2013 Sep-Oct;4(5):403-8. https://doi.org/10.4161/gmic.26039MoellerAHOchmanH.Factors that drive variation among gut microbial communities. Gut Microbes. 2013Sep-Oct;4(5):403-8. https://doi.org/10.4161/gmic.26039Search in Google Scholar
Moeller AH, Foerster S, Wilson ML, Pusey AE, Hahn BH, Ochman H. Social behavior shapes the chimpanzee pan-microbiome. Sci Adv. 2016;2(1):e1500997. https://doi.org/10.1126/sciadv.1500997MoellerAHFoersterSWilsonMLPuseyAEHahnBHOchmanH.Social behavior shapes the chimpanzee pan-microbiome. Sci Adv. 2016;2(1):e1500997. https://doi.org/10.1126/sciadv.1500997Search in Google Scholar
Mohamed Qadir R, Assafi MS. The association between body mass index and the oral Firmicutes and Bacteroidetes profiles of healthy individuals. Malays Fam Physician. 2021;16(3):36–43. https://doi.org/10.51866/oa1129Mohamed QadirRAssafiMS.The association between body mass index and the oral Firmicutes and Bacteroidetes profiles of healthy individuals. Malays Fam Physician. 2021;16(3):36–43. https://doi.org/10.51866/oa1129Search in Google Scholar
Narat V, Amato KR, Ranger N, Salmona M, Mercier-Delarue S, Rupp S, Ambata P, Njouom R, Simon F, Giles-Vernick T, et al. A multi-disciplinary comparison of great ape gut microbiota in a central African forest and European zoo. Sci Rep. 2020;10(1):19107. https://doi.org/10.1038/s41598-020-75847-3NaratVAmatoKRRangerNSalmonaMMercier-DelarueSRuppSAmbataPNjouomRSimonFGiles-VernickTA multi-disciplinary comparison of great ape gut microbiota in a central African forest and European zoo. Sci Rep. 2020;10(1):19107. https://doi.org/10.1038/s41598-020-75847-3Search in Google Scholar
Nishida AH, Ochman H. A great-ape view of the gut microbiome. Nat Rev Genet. 2019;20(4):195–206. https://doi.org/10.1038/s41576-018-0085-zNishidaAHOchmanH.A great-ape view of the gut microbiome. Nat Rev Genet. 2019;20(4):195–206. https://doi.org/10.1038/s41576-018-0085-zSearch in Google Scholar
Pan X, Liu F, Song Y, Wang H, Wang L, Qiu H, Price M, Li J. Motor stereotypic behavior was associated with immune response in macaques: Insight from transcriptome and gut microbiota analysis. Front Microbiol. 2021;12:644540. https://doi.org/10.3389/fmicb.2021.644540PanXLiuFSongYWangHWangLQiuHPriceMLiJ.Motor stereotypic behavior was associated with immune response in macaques: Insight from transcriptome and gut microbiota analysis. Front Microbiol. 2021;12:644540. https://doi.org/10.3389/fmicb.2021.644540Search in Google Scholar
Pan X, Raaijmakers JM, Carrión VJ. Importance of Bacteroidetes in host-microbe interactions and ecosystem functioning. Trends Microbiol. 2023;31(9):959–971. https://doi.org/10.1016/j.tim.2023.03.018PanXRaaijmakersJMCarriónVJ.Importance of Bacteroidetes in host-microbe interactions and ecosystem functioning. Trends Microbiol. 2023;31(9):959–971. https://doi.org/10.1016/j.tim.2023.03.018Search in Google Scholar
Pascual A, Kalcher-Sommersguter E, Riba D, Crailsheim D. Long-term assessment of captive chimpanzees: Influence of social group composition, seasonality and biographic background. Animals. 2023;13(3):424. https://doi.org/10.3390/ani13030424PascualAKalcher-SommersguterERibaDCrailsheimD.Long-term assessment of captive chimpanzees: Influence of social group composition, seasonality and biographic background. Animals. 2023;13(3):424. https://doi.org/10.3390/ani13030424Search in Google Scholar
Pusey AE, Oehlert GW, Williams JM, Goodall J. Influence of ecological and social factors on body mass of wild chimpanzees. Int J Primatol. 2005;26(1):3–31. https://doi.org/10.1007/s10764-005-0721-2PuseyAEOehlertGWWilliamsJMGoodallJ.Influence of ecological and social factors on body mass of wild chimpanzees. Int J Primatol. 2005;26(1):3–31. https://doi.org/10.1007/s10764-005-0721-2Search in Google Scholar
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013 Jan;41(Database issue):D590–D596. https://doi.org/10.1093/nar/gks1219QuastCPruesseEYilmazPGerkenJSchweerTYarzaPPepliesJGlöcknerFO.The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013Jan;41(Database issue):D590–D596. https://doi.org/10.1093/nar/gks1219Search in Google Scholar
Reese AT, Phillips SR, Owens LA, Venable EM, Langergraber KE, Machanda ZP, Mitani JC, Muller MN, Watts DP, Wrangham RWet al. Age patterning in wild chimpanzee gut microbiota diversity reveals differences from humans in early life. Curr Biol. 2021;31(3):613–620.e3. https://doi.org/10.1016/j.cub.2020.10.075ReeseATPhillipsSROwensLAVenableEMLangergraberKEMachandaZPMitaniJCMullerMNWattsDPWranghamRWAge patterning in wild chimpanzee gut microbiota diversity reveals differences from humans in early life. Curr Biol. 2021;31(3):613–620.e3. https://doi.org/10.1016/j.cub.2020.10.075Search in Google Scholar
Ren D, Li L, Schwabacher AW, Young JW, Beitz DC. Mechanism of cholesterol reduction to coprostanol by Eubacterium coprostanoligenes ATCC 51222. Steroids. 1996;61(1):33–40. https://doi.org/10.1016/0039-128x(95)00173-nRenDLiLSchwabacherAWYoungJWBeitzDC.Mechanism of cholesterol reduction to coprostanol by Eubacterium coprostanoligenes ATCC 51222. Steroids. 1996;61(1):33–40. https://doi.org/10.1016/0039-128x(95)00173-nSearch in Google Scholar
Rivière A, Selak M, Lantin D, Leroy F, De Vuyst L. Bifidobacteria and butyrate-producing colon bacteria: Importance and strategies for their stimulation in the human gut. Front Microbiol. 2016;7:979. https://doi.org/10.3389/fmicb.2016.00979RivièreASelakMLantinDLeroyFDe VuystL.Bifidobacteria and butyrate-producing colon bacteria: Importance and strategies for their stimulation in the human gut. Front Microbiol. 2016;7:979. https://doi.org/10.3389/fmicb.2016.00979Search in Google Scholar
Roth G. Convergent evolution of complex brains and high intelligence. Philos Trans R Soc Lond B Biol Sci. 2015;370(1684):20150049. https://doi.org/10.1098/rstb.2015.0049RothG.Convergent evolution of complex brains and high intelligence. Philos Trans R Soc Lond B Biol Sci. 2015;370(1684):20150049. https://doi.org/10.1098/rstb.2015.0049Search in Google Scholar
Rouskas K, Guela M, Pantoura M, Pagkalos I, Hassapidou M, Lalama E, Pfeiffer AFH, Decorte E, Cornelissen V, Wilson-Barnes S, et al. The influence of an AI-driven personalized nutrition program on the human gut microbiome and its health implications. Nutrients. 2025;17(7):1260. https://doi.org/10.3390/nu17071260RouskasKGuelaMPantouraMPagkalosIHassapidouMLalamaEPfeifferAFHDecorteECornelissenVWilson-BarnesSThe influence of an AI-driven personalized nutrition program on the human gut microbiome and its health implications. Nutrients. 2025;17(7):1260. https://doi.org/10.3390/nu17071260Search in Google Scholar
Staerk J, Colchero F, Kenney MA, Wilson KA, Foden WB, Carr JA, Pereboom Z, Bland L, Flesness N, Martin T, et al. A decision framework to integrate in-situ and ex-situ management for species in the European Union. Front Conserv Sci. 2024;4:1298850. https://doi.org/10.3389/fcosc.2023.1298850StaerkJColcheroFKenneyMAWilsonKAFodenWBCarrJAPereboomZBlandLFlesnessNMartinTA decision framework to integrate in-situ and ex-situ management for species in the European Union. Front Conserv Sci. 2024;4:1298850. https://doi.org/10.3389/fcosc.2023.1298850Search in Google Scholar
Sun Y, Zhang S, Nie Q, He H, Tan H, Geng F, Ji H, Hu J, Nie S. Gut firmicutes: Relationship with dietary fiber and role in host homeostasis. Crit Rev Food Sci Nutr. 2023;63(33):12073–12088. https://doi.org/10.1080/10408398.2022.2098249SunYZhangSNieQHeHTanHGengFJiHHuJNieS.Gut firmicutes: Relationship with dietary fiber and role in host homeostasis. Crit Rev Food Sci Nutr. 2023;63(33):12073–12088. https://doi.org/10.1080/10408398.2022.2098249Search in Google Scholar
Szekely BA, Singh J, Marsh TL, Hagedorn C, Werre SR, Kaur T. Fecal bacterial diversity of human-habituated wild chimpanzees (Pan troglodytes schweinfurthii) at Mahale Mountains National Park, Western Tanzania. Am J Primatol. 2010;72(7):566–574. https://doi.org/10.1002/ajp.20809SzekelyBASinghJMarshTLHagedornCWerreSRKaurT.Fecal bacterial diversity of human-habituated wild chimpanzees (Pan troglodytes schweinfurthii) at Mahale Mountains National Park, Western Tanzania. Am J Primatol. 2010;72(7):566–574. https://doi.org/10.1002/ajp.20809Search in Google Scholar
Tutin CEG, Fernandez M. Composition of the diet of chimpanzees and comparisons with that of sympatric lowland gorillas in the lopé reserve, gabon. Am J Primatol. 1993;30(3):195–211. https://doi.org/10.1002/ajp.1350300305TutinCEGFernandezM.Composition of the diet of chimpanzees and comparisons with that of sympatric lowland gorillas in the lopé reserve, gabon. Am J Primatol. 1993;30(3):195–211. https://doi.org/10.1002/ajp.1350300305Search in Google Scholar
van den Heuvel MP, Ardesch DJ, Scholtens LH, de Lange SC, van Haren NEM, Sommer IEC, Dannlowski U, Repple J, Preuss TM, Hopkins WD, et al. Human and chimpanzee shared and divergent neurobiological systems for general and specific cognitive brain functions. Proc Natl Acad Sci USA. 2023;120(22):e2218565120. https://doi.org/10.1073/pnas.2218565120van den HeuvelMPArdeschDJScholtensLHde LangeSCvan HarenNEMSommerIECDannlowskiUReppleJPreussTMHopkinsWDHuman and chimpanzee shared and divergent neurobiological systems for general and specific cognitive brain functions. Proc Natl Acad Sci USA. 2023;120(22):e2218565120. https://doi.org/10.1073/pnas.2218565120Search in Google Scholar
Visser F, Drouilly M, Moodley Y, Michaux JR, Somers MJ. Mismatch between conservation needs and actual representation ofVisserFDrouillyMMoodleyYMichauxJRSomersMJ.Mismatch between conservation needs and actual representation ofSearch in Google Scholar