This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet. 2022 Feb;399(10325):629–655. https://doi.org/10.1016/S0140-6736(21)02724-0Antimicrobial Resistance Collaborators.Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis.Lancet.2022Feb;399(10325):629–655.https://doi.org/10.1016/S0140-6736(21)02724-0Search in Google Scholar
Chen JS, Ma E, Harrington LB, Da Costa M, Tian X, Palefsky JM, Doudna JA. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science. 2018 Apr;360(6387): 436–439. https://doi.org/10.1126/science.aar6245ChenJSMaEHarringtonLBDa CostaMTianXPalefskyJMDoudnaJA.CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity.Science.2018Apr;360(6387):436–439.https://doi.org/10.1126/science.aar6245Search in Google Scholar
Chen Y, Zhou Z, Jiang Y, Yu Y. Emergence of NDM-1-producing Acinetobacter baumannii in China. J Antimicrob Chemother. 2011 Jun;66(6):1255–1259. https://doi.org/10.1093/jac/dkr082ChenYZhouZJiangYYuY.Emergence of NDM-1-producing Acinetobacter baumannii in China.J Antimicrob Chemother.2011Jun;66(6):1255–1259.https://doi.org/10.1093/jac/dkr082Search in Google Scholar
CLSI. Performance standards for antimicrobial susceptibility testing. 30th ed. CLSI supplement M100. Wayne (USA): Clinical and Laboratory Standards Institute; 2020.CLSI.Performance standards for antimicrobial susceptibility testing.30th ed.CLSI supplement M100.Wayne (USA):Clinical and Laboratory Standards Institute;2020.Search in Google Scholar
Diene SM, Rolain JM. Carbapenemase genes and genetic platforms in Gram-negative bacilli: Enterobacteriaceae, Pseudomonas and Acinetobacter species. Clin Microbiol Infect. 2014 Sep;20(9):831–838. https://doi.org/10.1111/1469-0691.12655DieneSMRolainJM.Carbapenemase genes and genetic platforms in Gram-negative bacilli: Enterobacteriaceae, Pseudomonas and Acinetobacter species.Clin Microbiol Infect.2014Sep;20(9):831–838.https://doi.org/10.1111/1469-0691.12655Search in Google Scholar
Doi Y, Potoski BA, Adams-Haduch JM, Sidjabat HE, Pasculle AW, Paterson DL. Simple disk-based method for detection of Klebsiella pneumoniae carbapenemase-type β-lactamase by use of a boronic acid compound. J Clin Microbiol. 2008 Dec;46(12):4083–4086. https://doi.org/10.1128/jcm.01408-08DoiYPotoskiBAAdams-HaduchJMSidjabatHEPasculleAWPatersonDL.Simple disk-based method for detection of Klebsiella pneumoniae carbapenemase-type β-lactamase by use of a boronic acid compound.J Clin Microbiol.2008Dec;46(12):4083–4086.https://doi.org/10.1128/jcm.01408-08Search in Google Scholar
Falcone M, Daikos GL, Tiseo G, Bassoulis D, Giordano C, Galfo V, Leonildi A, Tagliaferri E, Barnini S, Sani S, et al. Efficacy of ceftazidime-avibactam plus aztreonam in patients with bloodstream infections caused by metallo-β-lactamase-producing Enterobacterales. Clin Infect Dis. 2021 Jun 01;72(11):1871–1878. https://doi.org/10.1093/cid/ciaa586FalconeMDaikosGLTiseoGBassoulisDGiordanoCGalfoVLeonildiATagliaferriEBarniniSSaniSEfficacy of ceftazidime-avibactam plus aztreonam in patients with bloodstream infections caused by metallo-β-lactamase-producing Enterobacterales.Clin Infect Dis.2021Jun;72(11):1871–1878.https://doi.org/10.1093/cid/ciaa586Search in Google Scholar
Gu D, Yan Z, Cai C, Li J, Zhang Y, Wu Y, Yang J, Huang Y, Zhang R, Wu Y. Comparison of the NG-test Carba 5, colloidal gold immunoassay (CGI) test, and Xpert Carba-R for the rapid detection of car-bapenemases in carbapenemase-producing organisms. Antibiotics. 2023 Feb;12(2):300. https://doi.org/10.3390/antibiotics12020300GuDYanZCaiCLiJZhangYWuYYangJHuangYZhangRWuY.Comparison of the NG-test Carba 5, colloidal gold immunoassay (CGI) test, and Xpert Carba-R for the rapid detection of car-bapenemases in carbapenemase-producing organisms.Antibiotics.2023Feb;12(2):300.https://doi.org/10.3390/antibiotics12020300Search in Google Scholar
Guzek A, Rybicki Z, Tomaszewski D, Mackiewicz K, Piechota W, Chciałowski A. Outcomes of 23 patients diagnosed with New Delhi metallo-β-lactamase (NDM)-producing Klebsiella pneumoniae infection treated with ceftazidime/avibactam and aztreonam at a single center in Poland. Eur J Clin Microbiol Infect Dis. 2024 Aug; 43(8):1579–1587. https://doi.org/10.1007/s10096-024-04859-yGuzekARybickiZTomaszewskiDMackiewiczKPiechotaWChciałowskiA.Outcomes of 23 patients diagnosed with New Delhi metallo-β-lactamase (NDM)-producing Klebsiella pneumoniae infection treated with ceftazidime/avibactam and aztreonam at a single center in Poland.Eur J Clin Microbiol Infect Dis.2024Aug;43(8):1579–1587.https://doi.org/10.1007/s10096-024-04859-ySearch in Google Scholar
Jiang T, Hu X, Lin C, Xia Z, Yang W, Zhu Y, Xu H, Tang H, Shen J. Rapid visualization of Clostridioides difficile toxins A and B by multiplex RPA combined with CRISPR-Cas12a. Front Microbiol. 2023 Mar;14:1119395. https://doi.org/10.3389/fmicb.2023.1119395JiangTHuXLinCXiaZYangWZhuYXuHTangHShenJ.Rapid visualization of Clostridioides difficile toxins A and B by multiplex RPA combined with CRISPR-Cas12a.Front Microbiol.2023Mar;14:1119395.https://doi.org/10.3389/fmicb.2023.1119395Search in Google Scholar
Katsiari M, Panagiota G, Likousi S, Roussou Z, Polemis M, Alkiviadis Vatopoulos C, Platsouka ED, Maguina A. Carbapenem-resistant Klebsiella pneumoniae infections in a Greek intensive care unit: Molecular characterisation and treatment challenges. J Glob Antimicrob Resist. 2015 Jun;3(2):123–127. https://doi.org/10.1016/j.jgar.2015.01.006KatsiariMPanagiotaGLikousiSRoussouZPolemisMAlkiviadis VatopoulosCPlatsoukaEDMaguinaA.Carbapenem-resistant Klebsiella pneumoniae infections in a Greek intensive care unit: Molecular characterisation and treatment challenges.J Glob Antimicrob Resist.2015Jun;3(2):123–127.https://doi.org/10.1016/j.jgar.2015.01.006Search in Google Scholar
Khalifa HO, Soliman AM, Ahmed AM, Shimamoto T, Nariya H, Matsumoto T, Shimamoto T. High prevalence of antimicrobial resistance in Gram-negative bacteria isolated from clinical settings in Egypt: Recalling for judicious use of conventional antimicrobials in developing nations. Microb Drug Resist. 2019 Apr;25(3):371–385. https://doi.org/10.1089/mdr.2018.0380KhalifaHOSolimanAMAhmedAMShimamotoTNariyaHMatsumotoTShimamotoT.High prevalence of antimicrobial resistance in Gram-negative bacteria isolated from clinical settings in Egypt: Recalling for judicious use of conventional antimicrobials in developing nations.Microb Drug Resist.2019Apr;25(3):371–385.https://doi.org/10.1089/mdr.2018.0380Search in Google Scholar
Lambert M, Leijonhufvud C, Segerberg F, Melenhorst JJ, Carlsten M. CRISPR/Cas9-based gene engineering of human natural killer cells: Protocols for knockout and readouts to evaluate their efficacy. Methods Mol Biol. 2020;2121:213–239. https://doi.org/10.1007/978-1-0716-0338-3_18LambertMLeijonhufvudCSegerbergFMelenhorstJJCarlstenM.CRISPR/Cas9-based gene engineering of human natural killer cells: Protocols for knockout and readouts to evaluate their efficacy.Methods Mol Biol.2020;2121:213–239.https://doi.org/10.1007/978-1-0716-0338-3_18Search in Google Scholar
Li L, Hu S, Chen X. Non-viral delivery systems for CRISPR/Cas9-based genome editing: Challenges and opportunities. Biomaterials. 2018 Jul;171:207–218. https://doi.org/10.1016/j.biomaterials.2018.04.031LiLHuSChenX.Non-viral delivery systems for CRISPR/Cas9-based genome editing: Challenges and opportunities.Biomaterials.2018Jul;171:207–218.https://doi.org/10.1016/j.biomaterials.2018.04.031Search in Google Scholar
Ma J, Song X, Li M, Yu Z, Cheng W, Yu Z, Zhang W, Zhang Y, Shen A, Sun H, et al. Global spread of carbapenem-resistant Entero-bacteriaceae: Epidemiological features, resistance mechanisms, detection and therapy. Microbiol Res. 2023 Jan;266:127249. https://doi.org/10.1016/j.micres.2022.127249MaJSongXLiMYuZChengWYuZZhangWZhangYShenASunHGlobal spread of carbapenem-resistant Entero-bacteriaceae: Epidemiological features, resistance mechanisms, detection and therapy.Microbiol Res.2023Jan;266:127249.https://doi.org/10.1016/j.micres.2022.127249Search in Google Scholar
Oueslati S, Tlili L, Exilie C, Bernabeu S, Iorga B, Bonnin RA, Dortet L, Naas T. Different phenotypic expression of KPC β-lactamase variants and challenges in their detection. J Antimicrob Chemother. 2020 Mar;75(3):769–771. https://doi.org/10.1093/jac/dkz508OueslatiSTliliLExilieCBernabeuSIorgaBBonninRADortetLNaasT.Different phenotypic expression of KPC β-lactamase variants and challenges in their detection.J Antimicrob Chemother.2020Mar;75(3):769–771.https://doi.org/10.1093/jac/dkz508Search in Google Scholar
Reygaert WC. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018 Jun 26;4(3):482–501. https://doi.org/10.3934/microbiol.2018.3.482ReygaertWC.An overview of the antimicrobial resistance mechanisms of bacteria.AIMS Microbiol.2018Jun;4(3):482–501.https://doi.org/10.3934/microbiol.2018.3.482Search in Google Scholar
Salsman J, Dellaire G. Precision genome editing in the CRISPR era. Biochem Cell Biol. 2017 Apr;95(2):187–201. https://doi.org/10.1139/bcb-2016-0137SalsmanJDellaireG.Precision genome editing in the CRISPR era.Biochem Cell Biol.2017Apr;95(2):187–201.https://doi.org/10.1139/bcb-2016-0137Search in Google Scholar
Tsou JH, Leng Q, Jiang F. A CRISPR test for detection of circulating nuclei acids. Transl Oncol. 2019 Dec;12(12):1566–1573. https://doi.org/10.1016/j.tranon.2019.08.011TsouJHLengQJiangF.A CRISPR test for detection of circulating nuclei acids.Transl Oncol.2019Dec;12(12):1566–1573.https://doi.org/10.1016/j.tranon.2019.08.011Search in Google Scholar
Wang M, Earley M, Chen L, Hanson BM, Yu Y, Liu Z, Salcedo S, Cober E, Li L, Kanj SS, et al; Multi-Drug Resistant Organism Network Investigators. Clinical outcomes and bacterial characteristics of carbapenem-resistant Klebsiella pneumoniae complex among patients from different global regions (CRACKLE-2): A prospective, multicentre, cohort study. Lancet Infect Dis. 2022 Mar;22(3):401–412. https://doi.org/10.1016/S1473-3099(21)00399-6WangMEarleyMChenLHansonBMYuYLiuZSalcedoSCoberELiLKanjSSMulti-Drug Resistant Organism Network InvestigatorsClinical outcomes and bacterial characteristics of carbapenem-resistant Klebsiella pneumoniae complex among patients from different global regions (CRACKLE-2): A prospective, multicentre, cohort study.Lancet Infect Dis.2022Mar;22(3):401–412.https://doi.org/10.1016/S1473-3099(21)00399-6Search in Google Scholar
Xu H, Tang H, Li R, Xia Z, Yang W, Zhu Y, Liu Z, Lu G, Ni S, Shen J. A new method based on LAMP-CRISPR-Cas12a-lateral flow immunochromatographic strip for detection. Infect Drug Resist. 2022 Feb;15:685–696. https://doi.org/10.2147/idr.s348456XuHTangHLiRXiaZYangWZhuYLiuZLuGNiSShenJ.A new method based on LAMP-CRISPR-Cas12a-lateral flow immunochromatographic strip for detection.Infect Drug Resist.2022Feb;15:685–696.https://doi.org/10.2147/idr.s348456Search in Google Scholar
Yahav D, Giske CG, Grāmatniece A, Abodakpi H, Tam VH, Leibovici L. New β-lactam-β-lactamase inhibitor combinations. Clin Microbiol Rev. 2020 Nov;34(1):e00115-20. https://doi.org/10.1128/cmr.00115-20YahavDGiskeCGGrāmatnieceAAbodakpiHTamVHLeiboviciL.New β-lactam-β-lactamase inhibitor combinations.Clin Microbiol Rev.2020Nov;34(1):e00115-20.https://doi.org/10.1128/cmr.00115-20Search in Google Scholar
Zhang R, Liu L, Zhou H, Chan EW, Li J, Fang Y, Li Y, Liao K, Chen S. Nationwide surveillance of clinical carbapenem-resistant Enterobacteriaceae (CRE) strains in China. EBioMedicine. 2017 May; 19:98–106. https://doi.org/10.1016/j.ebiom.2017.04.032ZhangRLiuLZhouHChanEWLiJFangYLiYLiaoKChenS.Nationwide surveillance of clinical carbapenem-resistant Enterobacteriaceae (CRE) strains in China.EBioMedicine.2017May;19:98–106.https://doi.org/10.1016/j.ebiom.2017.04.032Search in Google Scholar
Zhang Y, Wang Q, Yin Y, Chen H, Jin L, Gu B, Xie L, Yang C, Ma X, Li H, et al. Epidemiology of carbapenem-resistant Entero-bacteriaceae infections: Report from the China CRE network. Antimicrob Agents Chemother. 2018 Jan;62(2):e01882-17. https://doi.org/10.1128/aac.01882-17ZhangYWangQYinYChenHJinLGuBXieLYangCMaXLiHEpidemiology of carbapenem-resistant Entero-bacteriaceae infections: Report from the China CRE network.Antimicrob Agents Chemother.2018Jan;62(2):e01882-17.https://doi.org/10.1128/aac.01882-17Search in Google Scholar
Zhang Z, Wang D, Li Y, Liu Y, Qin X. Comparison of the performance of phenotypic methods for the detection of carbapenem-resistant enterobacteriaceae (CRE) in clinical practice. Front Cell Infect Microbiol. 2022 Feb;12:849564. https://doi.org/10.3389/fcimb.2022.849564ZhangZWangDLiYLiuYQinX.Comparison of the performance of phenotypic methods for the detection of carbapenem-resistant enterobacteriaceae (CRE) in clinical practice.Front Cell Infect Microbiol.2022Feb;12:849564.https://doi.org/10.3389/fcimb.2022.849564Search in Google Scholar
Zhen X, Stålsby Lundborg C, Sun X, Gu S, Dong H. Clinical and economic burden of carbapenem-resistant infection or colonization caused by Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii: A multicenter study in China. Antibiotics. 2020 Aug;9(8):514. https://doi.org/10.3390/antibiotics9080514ZhenXStålsby LundborgCSunXGuSDongH.Clinical and economic burden of carbapenem-resistant infection or colonization caused by Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii: A multicenter study in China.Antibiotics.2020Aug;9(8):514.https://doi.org/10.3390/antibiotics9080514Search in Google Scholar
Zong Z, Feng Y, McNally A. Carbapenem and colistin resistance in Enterobacter: Determinants and clones. Trends Microbiol. 2021 Jun; 29(6):473–476. https://doi.org/10.1016/j.tim.2020.12.009ZongZFengYMcNallyA.Carbapenem and colistin resistance in Enterobacter: Determinants and clones.Trends Microbiol.2021Jun;29(6):473–476.https://doi.org/10.1016/j.tim.2020.12.009Search in Google Scholar