1. bookVolume 19 (2009): Edizione 3 (September 2009)
    Verified Methods: Applications in Medicine and Engineering (special issue), Andreas Rauh, Ekaterina Auer, Eberhard P. Hofer and Wolfram Luther (Eds.)
Dettagli della rivista
License
Formato
Rivista
eISSN
2083-8492
ISSN
1641-876X
Prima pubblicazione
05 Apr 2007
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
Accesso libero

Reliable Robust Path Planning with Application to Mobile Robots

Pubblicato online: 24 Sep 2009
Volume & Edizione: Volume 19 (2009) - Edizione 3 (September 2009) - Verified Methods: Applications in Medicine and Engineering (special issue), Andreas Rauh, Ekaterina Auer, Eberhard P. Hofer and Wolfram Luther (Eds.)
Pagine: 413 - 424
Dettagli della rivista
License
Formato
Rivista
eISSN
2083-8492
ISSN
1641-876X
Prima pubblicazione
05 Apr 2007
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese

Ackermann, J., Barlett, A., Kaesbauer, D., Sienel, W. and Steinhauser, R. (1993). Robust Control Systems with Uncertain Physical Parameters, Springer-Verlag, London.10.1007/978-1-4471-3365-0Search in Google Scholar

Alamo, T., Bravo, J., Camacho, E. and de Sevilla, U. (2003). Guaranteed state estimation by zonotopes, Proceedings of the 42nd Conference on Decision and Control, Maui, Hi, pp. 1035-1043.Search in Google Scholar

Berger, M. (1987). Geometry I and II, Springer-Verlag, Berlin.Search in Google Scholar

Bouilly, B., Simeon, T. and Alami, R. (1995). A numerical technique for planning motion strategies of a mobile robot in presence of uncertainty, Proceedings of the IEEE International Conference on Robotics and Automation, Nagoya, Japan, pp. 1327-1332.Search in Google Scholar

Collins, P. and Goldsztejn, A. (2008). The reach-and-evolve algorithm for reachability analysis of nonlinear dynamical systems, Electronic Notes in Theoretical Computer Science 223: 87-102.10.1016/j.entcs.2008.12.033Search in Google Scholar

Fraichard, T. and Mermond, R. (1998). Path planning with uncertainty for car-like robots, Proceedings of the IEEE International Conference on Robotics and Automation, Leuven, Belgium, pp. 27-32.Search in Google Scholar

Francis, B. A. and Khargonekar, P. P. (Eds.) (1995). Robust Control Theory, IMA Volumes in Mathematics and Its Applications, Vol. 66, Springer-Verlag, New York, NY.Search in Google Scholar

Gonzalez, J. P. and Stentz, A. (2004). Planning with uncertainty in position: An optimal planner, Technical Report CMURI-TR-04-63, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA.10.21236/ADA526163Search in Google Scholar

Gonzalez, J. P. and Stentz, A. (2005). Planning with uncertainty in position: An optimal and efficient planner, Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Edmonton, Canada, pp. 2435-2442.Search in Google Scholar

Gonzalez, J. P. and Stentz, A. (2007). Planning with uncertainty in position using high-resolution maps, Proceedings of the IEEE International Conference on Robotics and Automation, Rome, Italy, pp. 1015-1022.Search in Google Scholar

Graham, R. L. (1972). An efficient algorithm for determining the convex hull of a finite planar set, Information Processing Letters 1(4): 132-133.10.1016/0020-0190(72)90045-2Search in Google Scholar

Jaulin, L. (2001). Path planning using intervals and graphs, Reliable Computing 7(1): 1-15.10.1023/A:1011400431065Search in Google Scholar

Jaulin, L. (2002). Nonlinear bounded-error state estimation of continuous-time systems, Automatica 38(6): 1079-1082.10.1016/S0005-1098(01)00284-9Search in Google Scholar

Jaulin, L., Kieffer, M., Didrit, O. and Walter, E. (2001). Applied Interval Analysis, Springer-Verlag, London.10.1007/978-1-4471-0249-6Search in Google Scholar

Jaulin, L. and Walter, E. (1996). Guaranteed tuning, with application to robust control and motion planning, Automatica 32(8): 1217-1221.10.1016/0005-1098(96)00050-7Search in Google Scholar

Kieffer, M., Jaulin, L., Braems, I. and Walter, E. (2001). Guaranteed set computation with subpavings, in W. Kraemer and J. W. von Gudenberg (Eds.), Scientific Computing, Validated Numerics, Interval Methods, Kluwer Academic/Plenum Publishers, New York, NY, pp. 167-178.10.1007/978-1-4757-6484-0_14Search in Google Scholar

Kieffer, M., Jaulin, L. and Walter, E. (2002). Guaranteed recursive nonlinear state bounding using interval analysis, International Journal of Adaptative Control and Signal Processing 6(3): 193-218.10.1002/acs.680Search in Google Scholar

Kieffer, M. and Walter, E. (2003). Nonlinear parameter and state estimation for cooperative systems in a bounded-error context, in R. Alt, A. Frommer, R. B. Kearfott and W. Luther (Eds.), Numerical Software with Result Verification (Platforms, Algorithms, Applications in Engineering, Physics, and Economics), Springer, New York, NY, pp. 107-123.Search in Google Scholar

Kieffer, M. and Walter, E. (2006). Guaranteed nonlinear state estimation for continuous-time dynamical models from discrete-time measurements, Proceedings of the 6th IFAC Symposium on Robust Control, Toulouse, France, (on CD-ROM).10.3182/20060705-3-FR-2907.00117Search in Google Scholar

Kuffner, J. J. and LaValle, S. M. (2000). RRT-connect: An efficient approach to single-query path planning, Proceedings of the IEEE International Conference on Robotics and Automation, San Francisco, CA, USA, pp. 995-1001.Search in Google Scholar

Lambert, A. and Gruyer, D. (2003). Safe path planning in an uncertain-configuration space, Proceedings of the IEEE International Conference on Robotics and Automation, Taipei, Taiwan, pp. 4185-4190.Search in Google Scholar

Latombe, J. C. (1991). Robot Motion Planning, Kluwer Academic Publishers, Boston, MA.10.1007/978-1-4615-4022-9Search in Google Scholar

LaValle, S. M. (1998). Rapidly-exploring Random Trees: A new tool for path planning, Technical report, Iowa State University, Ames, IO.Search in Google Scholar

LaValle, S. M. (2006). Planning Algorithms, Cambridge University Press, Cambridge, Available at: http://planning.cs.uiuc.edu/Search in Google Scholar

LaValle, S. M. and Kuffner, J. J. (2001a). Randomized kinodynamic planning, International Journal of Robotics Research 20(5): 378-400.10.1177/02783640122067453Search in Google Scholar

LaValle, S. M. and Kuffner, J. J. (2001b). Rapidly-exploring random trees: Progress and Prospects, in B. R. Donald, K. M. Lynch and D. Rus (Eds.), Algorithmic and Computational Robotics: New Directions, A. K. Peters, Wellesley, MA, pp. 293-308.Search in Google Scholar

Lazanas, A. and Latombe, J. C. (1995). Motion planning with uncertainty: A landmark approach, Artificial Intelligence 76(1-2): 287-317.10.1016/0004-3702(94)00079-GSearch in Google Scholar

Lohner, R. (1987). Enclosing the solutions of ordinary initial and boundary value problems, in E. Kaucher, U. Kulisch and C. Ullrich (Eds.), Computer Arithmetic: Scientific Computation and Programming Languages, BG Teubner, Stuttgart, pp. 255-286.Search in Google Scholar

Luenberger, D. (1966). Observers for multivariable systems, IEEE Transactions on Automatic Control 11(2): 190-197.10.1109/TAC.1966.1098323Search in Google Scholar

Moore, R. E. (1966). Interval Analysis, Prentice-Hall, Englewood Cliffs, NJ.Search in Google Scholar

Moore, R. E. (1979). Methods and Applications of Interval Analysis, SIAM, Philadelphia, PA.10.1137/1.9781611970906Search in Google Scholar

Pepy, R. and Lambert, A. (2006). Safe path planning in an uncertain-configuration space using RRT, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, pp. 5376-5381.Search in Google Scholar

Pepy, R., Lambert, A. and Mounier, H. (2006). Reducing navigation errors by planning with realistic vehicle model, Proceedings of the IEEE Intelligent Vehicle Symposium, Tokyo, Japan, pp. 300-307.Search in Google Scholar

Raissi, T., Ramdani, N. and Candau, Y. (2004). Set membership state and parameter estimation for systems described by nonlinear differential equations, Automatica 40(10): 1771-1777.10.1016/j.automatica.2004.05.006Search in Google Scholar

Ramdani, N., Meslem, N. and Candau, Y. (2008). Reachability analysis of uncertain nonlinear systems using guaranteed set integration, Proceedings of the IFAC World Congress, Seoul, Korea.10.3182/20080706-5-KR-1001.01515Search in Google Scholar

Schweppe, F. C. (1973). Uncertain Dynamic Systems, Prentice-Hall, Englewood Cliffs, NJ.Search in Google Scholar

Yakey, J., LaValle, S. M. and Kavraki, L. E. (2001). Randomized path planning for linkages with closed kinematic chains, IEEE Transactions on Robotics and Automation 17(6): 951-958.10.1109/70.976030Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo