1. bookVolume 16 (2021): Edizione 2 (December 2021)
Dettagli della rivista
License
Formato
Rivista
eISSN
2309-5377
Prima pubblicazione
30 Dec 2013
Frequenza di pubblicazione
2 volte all'anno
Lingue
Inglese
access type Accesso libero

Mahler’s Conjecture on ξ(3/2)nmod 1

Pubblicato online: 02 Feb 2022
Volume & Edizione: Volume 16 (2021) - Edizione 2 (December 2021)
Pagine: 49 - 70
Ricevuto: 27 Feb 2019
Accettato: 29 Aug 2021
Dettagli della rivista
License
Formato
Rivista
eISSN
2309-5377
Prima pubblicazione
30 Dec 2013
Frequenza di pubblicazione
2 volte all'anno
Lingue
Inglese
Abstract

K. Mahler’s conjecture: There exists no ξ ∈ ℝ+ such that the fractional parts {ξ(3/2)n} satisfy 0 {ξ(3/2)n} < 1/2 for all n = 0, 1, 2,... Such a ξ, if exists, is called a Mahler’s Z-number. In this paper we prove that if ξ is a Z-number, then the sequence xn = {ξ(3/2)n}, n =1, 2,... has asymptotic distribution function c0(x), where c0(x)=1 for x ∈ (0, 1].

Keywords

MSC 2010

MAHLER, K.: An unsolved problem on the powers of 3/2, J. Austral. Math. Soc. 8 (1968), 313–321.10.1017/S1446788700005371Search in Google Scholar

STRAUCH, O.: On distribution functions of ξ(3/2)n mod 1, Acta Arith. 81 (1997), no. 1, 25–35.Search in Google Scholar

YOUNG, L. C.: General inequalities of Stieltjes integrals and the convergence of Fourier series, Math. Ann. 115 (1938), no. 1, 581–612.Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo