INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. International Measures of Prevention, Application, and Economics of Corrosion Technologies Study, NACE International, 2016.Search in Google Scholar

2. Zayed, A., Garbatov, Y. & Guedes Soares, C. (2018) Corrosion degradation of ship hull steel plates accounting for local environmental conditions. Ocean Eng. 163, 299–306. DOI: 10.1016/j.oceaneng.2018.05.047.10.1016/j.oceaneng.2018.05.047Open DOISearch in Google Scholar

3. Balonis, M., Sant, G. & Isgor, O.B. (2018) Mitigating steel corrosion in reinforced concrete using functional coatings, corrosion inhibitors, and atomistic simulations. Cement Concrete Comp. In Press. DOI: 10.1016/j.cemconcomp.2018.08.006.10.1016/j.cemconcomp.2018.08.006Open DOISearch in Google Scholar

4. Shin, S., Lee, G., Ahmed, U., Lee, Y., Na, J. & Han, Ch. (2018) Risk-based underground pipeline safety management considering corrosion effect. J. Hazard. Mater. 342, 279–289. DOI: 10.1016/j.jhazmat.2017.08.029.10.1016/j.jhazmat.2017.08.029Open DOISearch in Google Scholar

5. Hao, Y., Liu, F., Han, E., Anjum, S. & Xu, G., (2013) The mechanism of inhibition by zinc phosphate in an epoxy coating. Corr. Sci. 69, 77–86. DOI: 10.1016/j.corsci.2012.11.025.10.1016/j.corsci.2012.11.025Open DOISearch in Google Scholar

6. Hernández, M., Genescá, J., Uruchurtu, J., Galliano, F. & Landolt, D. (2006) Effect of an inhibitive pigment zinc-aluminum-phosphate (ZAP) on the corrosion mechanisms of steel on waterborne coatings. Prog. Org. Coat. 56(2–3), 199–206. DOI: 10.1016/j.porgcoat.2006.05.001.10.1016/j.porgcoat.2006.05.001Open DOISearch in Google Scholar

7. Naderi, R. & Attar, M.M. (2009) The inhibitive performance of polyphosphate-based anticorrosion pigments using electrochemical techniques. Dyes Pigm. 80(3), 349–354. DOI: 10.1016/j.dyepig.2008.08.002.10.1016/j.dyepig.2008.08.002Open DOISearch in Google Scholar

8. Deyá, M.C., Blustein, G., Romagnoli R. & del Amo, B. (2002) The influence of the anion type on the anticorrosive behaviour of inorganic phosphates. Surf. Coat. Technol. 150(2-3), 133–142. DOI: 10.1016/S0257-8972(01)01522-5.10.1016/S0257-8972(01)01522-5Search in Google Scholar

9. Naderi R. & Attar M.M. (2009) Electrochemical study of protective behavior of organic coating pigmented with zinc aluminum polyphosphate as a modified zinc phosphate at different pigment volume concentrations. Prog. Org. Coat. 66(3), 314–320. DOI: 10.1016/j.porgcoat.2009.08.009.10.1016/j.porgcoat.2009.08.009Open DOISearch in Google Scholar

10. Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006.Search in Google Scholar

11. Molina, J., Puig, M., Gimeno, M.J., Izquierdo, R., Gracenea, J.J. & Suay J.J. (2016) Influence of zinc molybdenum phosphate pigment on coatings performance studied by electrochemical methods. Prog. Org. Coat. 97, 244–253. DOI: 10.1016/j.porgcoat.2016.04.029.10.1016/j.porgcoat.2016.04.029Open DOISearch in Google Scholar

12. Przywecka, K., Grzmil, B., Kowalczyk, K. & Sreńscek-Nazzal J. (2018) Studies on preparation of phosphate pigments for application in composite protective coatings. Prog. Org. Coat. 119, 44–49. DOI: 10.1016/j.porgcoat.2018.02.009.10.1016/j.porgcoat.2018.02.009Open DOISearch in Google Scholar

13. Alibakhshi, E., Ghasemi, E. & Mahdavian M. (2014) Sodium zinc phosphate as a corrosion inhibitive pigment. Prog. Org. Coat. 77, 1155–1162. DOI: 10.1016/j.porgcoat.2014.03.027.10.1016/j.porgcoat.2014.03.027Open DOISearch in Google Scholar

14. Puig, M., Gimeno, M.J., Gracenea, J.J. & Suay J.J. (2014) Anticorrosive properties enhancement in powder coating duplex systems by means of ZMP anticorrosive pigment. Assessment by electrochemical techniques. Prog. Org. Coat. 77(12A), 1993–1999. DOI: 10.1016/j.porgcoat.2014.04.031.10.1016/j.porgcoat.2014.04.031Open DOISearch in Google Scholar

15. El-Hamid, D., Blustein, G., Deyá, M., del Amo, B. & Romagnoli R., The anticorrosive performance of zinc-free non-toxic pigment for paints. Mater. Chem. Phys. 127(1–2), 353–357. DOI: 10.1016/j.matchemphys.2011.02.018.10.1016/j.matchemphys.2011.02.018Open DOISearch in Google Scholar

16. Karekar, S.E., Bhanvase, B.A., Sonawane, S.H., Deosarkar, M.P., Pinjari, D.V. & Pandit, A.B. (2015) Synthesis of zinc molybdate and zinc phosphomolybdate nanopigments by an ultrasound assisted route: Advantage over conventional method. Chem. Eng. Process. 87, 51–59. DOI: 10.1016/j.cep.2014.11.010.10.1016/j.cep.2014.11.010Open DOISearch in Google Scholar

17. Bhoge, Y.E., Patil, V.J., Deshpande, T.D. & Kulkarni, R.D. (2017) Synthesis and anticorrosive performance evaluation of zinc vanadate pigment. Vacuum 145, 290–294. DOI: 10.1016/j.vacuum.2017.08.047.10.1016/j.vacuum.2017.08.047Open DOISearch in Google Scholar

18. Kowalczyk, K., Łuczka, K., Grzmil, B. & Spychaj, T. (2012) Anticorrosive polyurethane paints with nano- and microsized phosphates. Prog. Org. Coat. 74(1), 151–157. DOI: 10.1016/j.porgcoat.2011.12.003.10.1016/j.porgcoat.2011.12.003Open DOISearch in Google Scholar

19. Roselli, S.N., Lendvay-Györik, G., Mészáros G., Deyá C. & Romagnoli R. (2017) Anticorrosive water borne paints free from zinc and with reduced phosphate content. Prog. Org. Coat. 112, 27–36. DOI: 10.1016/j.porgcoat.2017.04.023.10.1016/j.porgcoat.2017.04.023Open DOISearch in Google Scholar

20. Eduok, U., Suleiman, R., Gittens, J., Khaled, M., Smith, T.J., Akid, R., El Ali, B. & Khalil, A. (2015) Anticorrosion/antifouling properties of bacterical spore-loaded sol-gel type coating for mild steel in saline marine condition: a case of termophilic strain of Bacillus licheniformis. RSC Adv. 5(114), 93818–93830. DOI: 10.1039/C5RA16494J.10.1039/C5RA16494JSearch in Google Scholar

21. Eduok, U., Suleiman, R., Khaled, M. & Akid, R. (2016) Enhancing water repellency and anticorrosion properties of a hybrid silica coating on mild steel. Prog. Org. Coat. 93, 97–108. DOI: 10.1016/j.porgcoat.2016.01.006.10.1016/j.porgcoat.2016.01.006Open DOISearch in Google Scholar

22. Eduok, U. & Szpunar J. (2018) Ultrasound-assisted synthesis of zinc molybdate nanocrystals and molybdate-doped epoxy/PDMS nanocomposite coatings for Mg alloy protection. Ultrason. Sonochem. 44, 288–298. DOI: 10.1016/j.ultsonch.2018.02.036.10.1016/j.ultsonch.2018.02.03629680614Open DOISearch in Google Scholar

23. Łuczka-Wilk, K., Grzmil, B., Kowalczyk, K., Kic, B. & Przywecka, K. (2017) Pigmenty fosforanowe zawierające amon, glin, wapń i molibden do zastosowań w kompozycjach powłok ochronnych. Przem. Chem. 96/12, 2527–2531. DOI: 10.15199/62.2017.12.27.10.15199/62.2017.12.27Search in Google Scholar

24. International Organization for Standarization. (1980). General methods of test for pigments and extenders. Part 5: Determination of oil absorption value. ISO 787–5:1980.Search in Google Scholar

25. Loto, C.A. (2012) Electrochemical Noise Measurment Technique in Corrosion Research. Int. J. Electrochem. Sci. 7, 9248–9270.10.1016/S1452-3981(23)16195-5Search in Google Scholar

eISSN:
1899-4741
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering