Uneingeschränkter Zugang

Anticorrosive and physicochemical properties of modified phosphate pigments


Zitieren

1. International Measures of Prevention, Application, and Economics of Corrosion Technologies Study, NACE International, 2016.Search in Google Scholar

2. Zayed, A., Garbatov, Y. & Guedes Soares, C. (2018) Corrosion degradation of ship hull steel plates accounting for local environmental conditions. Ocean Eng. 163, 299–306. DOI: 10.1016/j.oceaneng.2018.05.047.10.1016/j.oceaneng.2018.05.047Open DOISearch in Google Scholar

3. Balonis, M., Sant, G. & Isgor, O.B. (2018) Mitigating steel corrosion in reinforced concrete using functional coatings, corrosion inhibitors, and atomistic simulations. Cement Concrete Comp. In Press. DOI: 10.1016/j.cemconcomp.2018.08.006.10.1016/j.cemconcomp.2018.08.006Open DOISearch in Google Scholar

4. Shin, S., Lee, G., Ahmed, U., Lee, Y., Na, J. & Han, Ch. (2018) Risk-based underground pipeline safety management considering corrosion effect. J. Hazard. Mater. 342, 279–289. DOI: 10.1016/j.jhazmat.2017.08.029.10.1016/j.jhazmat.2017.08.029Open DOISearch in Google Scholar

5. Hao, Y., Liu, F., Han, E., Anjum, S. & Xu, G., (2013) The mechanism of inhibition by zinc phosphate in an epoxy coating. Corr. Sci. 69, 77–86. DOI: 10.1016/j.corsci.2012.11.025.10.1016/j.corsci.2012.11.025Open DOISearch in Google Scholar

6. Hernández, M., Genescá, J., Uruchurtu, J., Galliano, F. & Landolt, D. (2006) Effect of an inhibitive pigment zinc-aluminum-phosphate (ZAP) on the corrosion mechanisms of steel on waterborne coatings. Prog. Org. Coat. 56(2–3), 199–206. DOI: 10.1016/j.porgcoat.2006.05.001.10.1016/j.porgcoat.2006.05.001Open DOISearch in Google Scholar

7. Naderi, R. & Attar, M.M. (2009) The inhibitive performance of polyphosphate-based anticorrosion pigments using electrochemical techniques. Dyes Pigm. 80(3), 349–354. DOI: 10.1016/j.dyepig.2008.08.002.10.1016/j.dyepig.2008.08.002Open DOISearch in Google Scholar

8. Deyá, M.C., Blustein, G., Romagnoli R. & del Amo, B. (2002) The influence of the anion type on the anticorrosive behaviour of inorganic phosphates. Surf. Coat. Technol. 150(2-3), 133–142. DOI: 10.1016/S0257-8972(01)01522-5.10.1016/S0257-8972(01)01522-5Search in Google Scholar

9. Naderi R. & Attar M.M. (2009) Electrochemical study of protective behavior of organic coating pigmented with zinc aluminum polyphosphate as a modified zinc phosphate at different pigment volume concentrations. Prog. Org. Coat. 66(3), 314–320. DOI: 10.1016/j.porgcoat.2009.08.009.10.1016/j.porgcoat.2009.08.009Open DOISearch in Google Scholar

10. Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006.Search in Google Scholar

11. Molina, J., Puig, M., Gimeno, M.J., Izquierdo, R., Gracenea, J.J. & Suay J.J. (2016) Influence of zinc molybdenum phosphate pigment on coatings performance studied by electrochemical methods. Prog. Org. Coat. 97, 244–253. DOI: 10.1016/j.porgcoat.2016.04.029.10.1016/j.porgcoat.2016.04.029Open DOISearch in Google Scholar

12. Przywecka, K., Grzmil, B., Kowalczyk, K. & Sreńscek-Nazzal J. (2018) Studies on preparation of phosphate pigments for application in composite protective coatings. Prog. Org. Coat. 119, 44–49. DOI: 10.1016/j.porgcoat.2018.02.009.10.1016/j.porgcoat.2018.02.009Open DOISearch in Google Scholar

13. Alibakhshi, E., Ghasemi, E. & Mahdavian M. (2014) Sodium zinc phosphate as a corrosion inhibitive pigment. Prog. Org. Coat. 77, 1155–1162. DOI: 10.1016/j.porgcoat.2014.03.027.10.1016/j.porgcoat.2014.03.027Open DOISearch in Google Scholar

14. Puig, M., Gimeno, M.J., Gracenea, J.J. & Suay J.J. (2014) Anticorrosive properties enhancement in powder coating duplex systems by means of ZMP anticorrosive pigment. Assessment by electrochemical techniques. Prog. Org. Coat. 77(12A), 1993–1999. DOI: 10.1016/j.porgcoat.2014.04.031.10.1016/j.porgcoat.2014.04.031Open DOISearch in Google Scholar

15. El-Hamid, D., Blustein, G., Deyá, M., del Amo, B. & Romagnoli R., The anticorrosive performance of zinc-free non-toxic pigment for paints. Mater. Chem. Phys. 127(1–2), 353–357. DOI: 10.1016/j.matchemphys.2011.02.018.10.1016/j.matchemphys.2011.02.018Open DOISearch in Google Scholar

16. Karekar, S.E., Bhanvase, B.A., Sonawane, S.H., Deosarkar, M.P., Pinjari, D.V. & Pandit, A.B. (2015) Synthesis of zinc molybdate and zinc phosphomolybdate nanopigments by an ultrasound assisted route: Advantage over conventional method. Chem. Eng. Process. 87, 51–59. DOI: 10.1016/j.cep.2014.11.010.10.1016/j.cep.2014.11.010Open DOISearch in Google Scholar

17. Bhoge, Y.E., Patil, V.J., Deshpande, T.D. & Kulkarni, R.D. (2017) Synthesis and anticorrosive performance evaluation of zinc vanadate pigment. Vacuum 145, 290–294. DOI: 10.1016/j.vacuum.2017.08.047.10.1016/j.vacuum.2017.08.047Open DOISearch in Google Scholar

18. Kowalczyk, K., Łuczka, K., Grzmil, B. & Spychaj, T. (2012) Anticorrosive polyurethane paints with nano- and microsized phosphates. Prog. Org. Coat. 74(1), 151–157. DOI: 10.1016/j.porgcoat.2011.12.003.10.1016/j.porgcoat.2011.12.003Open DOISearch in Google Scholar

19. Roselli, S.N., Lendvay-Györik, G., Mészáros G., Deyá C. & Romagnoli R. (2017) Anticorrosive water borne paints free from zinc and with reduced phosphate content. Prog. Org. Coat. 112, 27–36. DOI: 10.1016/j.porgcoat.2017.04.023.10.1016/j.porgcoat.2017.04.023Open DOISearch in Google Scholar

20. Eduok, U., Suleiman, R., Gittens, J., Khaled, M., Smith, T.J., Akid, R., El Ali, B. & Khalil, A. (2015) Anticorrosion/antifouling properties of bacterical spore-loaded sol-gel type coating for mild steel in saline marine condition: a case of termophilic strain of Bacillus licheniformis. RSC Adv. 5(114), 93818–93830. DOI: 10.1039/C5RA16494J.10.1039/C5RA16494JSearch in Google Scholar

21. Eduok, U., Suleiman, R., Khaled, M. & Akid, R. (2016) Enhancing water repellency and anticorrosion properties of a hybrid silica coating on mild steel. Prog. Org. Coat. 93, 97–108. DOI: 10.1016/j.porgcoat.2016.01.006.10.1016/j.porgcoat.2016.01.006Open DOISearch in Google Scholar

22. Eduok, U. & Szpunar J. (2018) Ultrasound-assisted synthesis of zinc molybdate nanocrystals and molybdate-doped epoxy/PDMS nanocomposite coatings for Mg alloy protection. Ultrason. Sonochem. 44, 288–298. DOI: 10.1016/j.ultsonch.2018.02.036.10.1016/j.ultsonch.2018.02.03629680614Open DOISearch in Google Scholar

23. Łuczka-Wilk, K., Grzmil, B., Kowalczyk, K., Kic, B. & Przywecka, K. (2017) Pigmenty fosforanowe zawierające amon, glin, wapń i molibden do zastosowań w kompozycjach powłok ochronnych. Przem. Chem. 96/12, 2527–2531. DOI: 10.15199/62.2017.12.27.10.15199/62.2017.12.27Search in Google Scholar

24. International Organization for Standarization. (1980). General methods of test for pigments and extenders. Part 5: Determination of oil absorption value. ISO 787–5:1980.Search in Google Scholar

25. Loto, C.A. (2012) Electrochemical Noise Measurment Technique in Corrosion Research. Int. J. Electrochem. Sci. 7, 9248–9270.10.1016/S1452-3981(23)16195-5Search in Google Scholar

eISSN:
1899-4741
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Industrielle Chemie, Biotechnologie, Chemieingenieurwesen, Verfahrenstechnik