1. bookVolume 30 (2022): Edizione 3 (September 2022)
Dettagli della rivista
License
Formato
Rivista
eISSN
2450-5781
Prima pubblicazione
30 Mar 2017
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
access type Accesso libero

Integrated Production System on Social Manufacturing: A Simulation Study

Pubblicato online: 13 Jul 2022
Volume & Edizione: Volume 30 (2022) - Edizione 3 (September 2022)
Pagine: 230 - 237
Ricevuto: 01 Sep 2021
Accettato: 01 Jul 2022
Dettagli della rivista
License
Formato
Rivista
eISSN
2450-5781
Prima pubblicazione
30 Mar 2017
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
Abstract

Today, the manufacturing industry must adapt to dynamic customer needs, changing from time to time following market trends. So that the production process in manufacturing requires adjustments, one of which is by forming social manufacturing. This study aims to create an integrated production system model based on social manufacturing, which involves several Socialized Manufacturing Resources (SMR) as manufacturing resources that are socialized to produce a product. The methods used are field observation, literature study, design of a social manufacturing-based production system model, model simulation using ProModel software, and analysis of model simulation results. In this study, the simulation involves four SMRs, each of which makes a part that has been given specifications by the manufacturer based on customer requests. The product produced is the Sanitation Chamber, which is equipped with a control system to monitor reading data via the internet. The model simulation uses the Pro Model software and analyzes resource use, location utilization, and resource costs.

Keywords

[1] F.T.Y. Cheng and L.Z.A.Y.C. Nee, “Advanced manufacturing systems : socialization characteristics and trends,” J. Intell. Manuf., vol. 28, no. 5, pp. 1079-1094, 2017, doi: 10.1007/s10845-015-1042-8. Apri DOISearch in Google Scholar

[2] K. Ding, P. Jiang, and S. Su, “RFID-enabled social manufacturing system for inter-enterprise monitoring and dispatching of integrated production and transportation tasks,” Robot. Comput. Integr. Manuf., vol. 49, no. July 2017, pp. 120-133, 2018, doi: 10.1016/j.rcim.2017.06.009. Apri DOISearch in Google Scholar

[3] P. Stief, J. Dantan, A. Etienne, and A. Siadat, “The Degree of Mass Personalisation under Industry 4.0 The Degree of Mass Personalisation under A new methodology to analyze functional and physical architecture of existing products for an oriented product family identificati,” Procedia CIRP, vol. 81, pp. 1394-1399, 2019, doi: 10.1016/j.procir.2019.04.050. Apri DOISearch in Google Scholar

[4] V. Pontevedra, “Mass Personalization with Industry 4.0 by SMEs: a concept for collaborative networks a concept for collaborative networks Costing models for of capacity in Ind,” Procedia Manuf., vol. 28, pp. 135-141, 2019, doi: 10.1016/j.promfg.2018.12.022. Apri DOISearch in Google Scholar

[5] D.A. Coelho, F. Nunes, and F.L. Vieira, “The impact of crowdsourcing in product development : an exploratory study of Quirky based on the perspective of participants,” Int. J. Des. Creat. Innov., vol. 0349, no. September, pp. 1-15, 2016, doi: 10.1080/21650349.2016.1216331. Apri DOISearch in Google Scholar

[6] P. Jiang, K. Ding, and J. Leng, “Towards a cyber-physical-social-connected and service-oriented manufacturing paradigm: Social Manufacturing,” Manuf. Lett., vol. 7, pp. 15-21, 2016, doi: 10.1016/j.mfglet.2015.12.002. Apri DOISearch in Google Scholar

[7] Y. Lu, “Journal of Industrial Information Integration Industry 4.0: A survey on technologies, applications and open research issues,” J. Ind. Inf. Integr., vol. 6, pp. 1-10, 2017, doi: 10.1016/j.jii.2017.04.005. Apri DOISearch in Google Scholar

[8] W. Ying, L. Geok, and S. Jia, “Social informatics of intelligent manufacturing ecosystems: A case study of KuteSmart,” Int. J. Inf. Manage., vol. 42, no. May, pp. 102-105, 2018, doi: 10.1016/j.ijinfomgt.2018.05.002. Apri DOISearch in Google Scholar

[9] K. Ding, P. Jiang, J. Leng, and W. Cao, “Modeling and analyzing of an enterprise relationship network in the context of social manufacturing,” 2015, doi: 10.1177/0954405414558730. Apri DOISearch in Google Scholar

[10] X. Xiao, W. Shufang, Z. Le-jun, and F. Zhi-yong, “Evaluating of dynamic service matching strategy for social manufacturing in cloud environment,” Futur. Gener. Comput. Syst., vol. 91, pp. 311-326, 2019, doi: 10.1016/j.future.2018.08.028. Apri DOISearch in Google Scholar

[11] X.T.R. Kong et al., “Computers & Industrial Engineering Cyber physical ecommerce logistics system : An implementation case in Hong Kong,” Comput. Ind. Eng. vol. 139, no. August 2019, p. 106170, 2020, doi: 10.1016/j.cie.2019.106170. Apri DOISearch in Google Scholar

[12] J. Lee, B. Bagheri, and H. Kao, “A Cyber-Physical Systems architecture for Industry 4.0 – based manufacturing systems,” Manuf. Lett., vol. 3, pp. 18-23, 2015, doi: 10.1016/j.mfglet.2014.12.001. Apri DOISearch in Google Scholar

[13] C. Kohtala, “Addressing sustainability in research on distributed production : an integrated literature review,” J. Clean. Prod., vol. 106, pp. 654-668, 2015, doi: 10.1016/j.jclepro.2014.09.039. Apri DOISearch in Google Scholar

[14] G. Xiong, S. Member, F. Wang, T.R. Nyberg, and X. Shang, “From Mind to Products: Towards Social Manufacturing and Service,” IEEE/CAA J. Autom. Sin., vol. 5, no. 1, pp. 47-57, 2018, doi: 10.1109/JAS.2017.7510742. Apri DOISearch in Google Scholar

[15] W. Guo and P. Jiang, “An investigation on establishing small and medium-sized enterprises communities under the environment of social manufacturing,” Concurr. Eng. Res. Appl., vol. 00, no. 0, pp. 1-14, 2018, doi: 10.1177/1063293X18770499. Apri DOISearch in Google Scholar

[16] X. Shang et al., “Social Manufacturing for High-end Apparel Customization,” IEEE/CAA J. Autom. Sin., vol. 5, no. 2, pp. 489-500, 2018, doi: 10.1109/JAS.2017.7510832. Apri DOISearch in Google Scholar

[17] H. Robert, V. Daniel, and A. Bilal, “Engineering the smart factory Engineering the Smart Factory,” no. October, 2016, doi: 10.3901/CJME.2016.0908.109. Apri DOISearch in Google Scholar

[18] M. Hamalainen and J. Karjalainen, “Social manufacturing: When the maker movement meets inter firm production networks,” Bus. Horiz., vol. 60, no. 6, pp. 795-805, 2017, doi: 10.1016/j.bushor.2017.07.007. Apri DOISearch in Google Scholar

[19] F. Gregori, A. Papetti, M. Pandolfi, M. Peruzzini, and M. Germani, “Digital manufacturing systems: a framework to improve social sustainability of a production site,” Procedia CIRP, vol. 63, pp. 436-442, 2017, doi: 10.1016/j.procir.2017.03.113. Apri DOISearch in Google Scholar

[20] K.D.P. Jiang, “Social Sensors (S 2 ensors): A Kind of Hardware-Software- Integrated Mediators for Social Manufacturing Systems Under Mass Individualization,” Chinese J. Mech. Eng., 2017, doi: 10.1007/s10033-017-0167-4. Apri DOISearch in Google Scholar

[21] P. Jiang and J. Leng, “The configuration of social manufacturing: a social intelligence way toward service-oriented manufacturing Pingyu Jiang* and Jiewu Leng,” Int. J. Manuf. Res., vol. 12, no. 1, pp. 4-19, 2017.10.1504/IJMR.2017.083647 Search in Google Scholar

[22] J.P. Arcangeli, R. Boujbel, and S. Leriche, “Automatic deployment of distributed software systems: Definitions and state of the art,” J. Syst. Softw., vol. 103, pp. 198-218, 2015, doi: 10.1016/j.jss.2015.01.040. Apri DOISearch in Google Scholar

[23] K. Watcharapanyawong, S. Sirisoponsilp, and P. Sophatsathit, “A Model of Mass Customization for Engineering Production System Development in Textile and Apparel Industries in Thailand,” Syst. Eng. Procedia, vol. 2, pp. 382-397, 2011, doi: 10.1016/j.sepro.2011.10.052. Apri DOISearch in Google Scholar

[24] M. Bortolini, F.G. Galizia, and C. Mora, “Reconfigurable manufacturing systems: Literature review and research trend,” J. Manuf. Syst., vol. 49, no. September, pp. 93-106, 2018, doi: 10.1016/j.jmsy.2018.09.005. Apri DOISearch in Google Scholar

[25] A. Santana, P. Afonso, A. Zanin, and R. Wernke, “Smart changeable manufacturing systems Costing models for capacity optimization in Industry 4.0: Trade-off between used capacity an,” Procedia Manuf., vol. 28, pp. 3-9, 2018, doi: 10.1016/j.promfg.2018.12.002. Apri DOISearch in Google Scholar

[26] A.W.W. Yew, S.K. Ong, and A.Y.C. Nee, “Towards a griddable distributed manufacturing system with augmented reality interfaces,” Robot. Comput. Integr. Manuf., vol. 39, pp. 43-55, 2016, doi: 10.1016/j.rcim.2015.12.002. Apri DOISearch in Google Scholar

[27] J. Wang, C. Xu, J. Zhang, J. Bao, and R. Zhong, “A collaborative architecture of the industrial internet platform for manufacturing systems,” Robot. Comput. Integr. Manuf., vol. 61, no. August 2019, 2020, doi: 10.1016/j.rcim.2019.101854. Apri DOISearch in Google Scholar

[28] J. Cecil, J. Ramanathan, and J. Huynh, “A shape modification app and cyber-physical framework for collaborative manufacturing,” Procedia Manuf., vol. 34, pp. 932-939, 2019, doi: 10.1016/j.promfg.2019.06.114. Apri DOISearch in Google Scholar

[29] A. Fayoumi, “Ecosystem-inspired enterprise modelling framework for collaborative and networked manufacturing systems,” Comput. Ind., vol. 80, pp. 54-68, 2016, doi: 10.1016/j.compind.2016.04.003. Apri DOISearch in Google Scholar

[30] J. Liu, Y. Yin, and S. Yan, “Research on clean energy power generation-energy storage-energy using virtual enterprise risk assessment based on fuzzy analytic hierarchy process in China,” J. Clean. Prod., vol. 236, p. 117471, 2019, doi: 10.1016/j.jclepro.2019.06.302. Apri DOISearch in Google Scholar

[31] H. Guan, T. Alix, and J.P. Bourrieres, “An integrated design framework for virtual enterprise-based customer-oriented product-service systems,” Procedia CIRP, vol. 83, pp. 198-203, 2019, doi: 10.1016/j.procir.2019.03.143. Apri DOISearch in Google Scholar

[32] D. Romero and O. Noran, “Towards Green Sensing Virtual Enterprises: Interconnected Sensing Enterprises, Intelligent Assets and Smart Products in the Cyber-Physical Circular Economy,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 11719-11724, 2017, doi: 10.1016/j.ifacol.2017.08.1944. Apri DOISearch in Google Scholar

[33] E. Hofmann and M. Rüsch, “Computers in Industry Industry 4.0 and the current status as well as future prospects on logistics,” Comput. Ind., vol. 89, pp. 23-34, 2017, doi: 10.1016/j.compind.2017.04.002. Apri DOISearch in Google Scholar

[34] H. Alkhalefah, “Requirements of the Smart Factory System: A Survey and Perspective,” 2018, doi: 10.3390/machines6020023. Apri DOISearch in Google Scholar

[35] W. Guo, P. Li, M. Yang, J. Liu, and P. Jiang, “Social Manufacturing: What are its key fundamentals?,” IFACPapersOnLine, vol. 53, no. 5, pp. 65-70, 2020, doi: 10.1016/j.ifacol.2021.04.126. Apri DOISearch in Google Scholar

[36] J. Leng, P. Jiang, and M. Zheng, “Outsourcer – supplier coordination for parts machining outsourcing under social manufacturing,” J. Eng. Manuf., pp. 1-13, 2015, doi: 10.1177/0954405415583883. Apri DOISearch in Google Scholar

[37] M. Nicola et al., “The socio-economic implications of the coronavirus pandemic (COVID-19): A review,” Int. J. Surg., vol. 78, no. April, pp. 185-193, 2020, doi: 10.1016/j.ijsu.2020.04.018.716275332305533 Apri DOISearch in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo