1. bookVolumen 30 (2022): Heft 3 (September 2022)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2450-5781
Erstveröffentlichung
30 Mar 2017
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
access type Uneingeschränkter Zugang

Integrated Production System on Social Manufacturing: A Simulation Study

Online veröffentlicht: 13 Jul 2022
Volumen & Heft: Volumen 30 (2022) - Heft 3 (September 2022)
Seitenbereich: 230 - 237
Eingereicht: 01 Sep 2021
Akzeptiert: 01 Jul 2022
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2450-5781
Erstveröffentlichung
30 Mar 2017
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
Abstract

Today, the manufacturing industry must adapt to dynamic customer needs, changing from time to time following market trends. So that the production process in manufacturing requires adjustments, one of which is by forming social manufacturing. This study aims to create an integrated production system model based on social manufacturing, which involves several Socialized Manufacturing Resources (SMR) as manufacturing resources that are socialized to produce a product. The methods used are field observation, literature study, design of a social manufacturing-based production system model, model simulation using ProModel software, and analysis of model simulation results. In this study, the simulation involves four SMRs, each of which makes a part that has been given specifications by the manufacturer based on customer requests. The product produced is the Sanitation Chamber, which is equipped with a control system to monitor reading data via the internet. The model simulation uses the Pro Model software and analyzes resource use, location utilization, and resource costs.

[1] F.T.Y. Cheng and L.Z.A.Y.C. Nee, “Advanced manufacturing systems : socialization characteristics and trends,” J. Intell. Manuf., vol. 28, no. 5, pp. 1079-1094, 2017, doi: 10.1007/s10845-015-1042-8. DOI öffnenSearch in Google Scholar

[2] K. Ding, P. Jiang, and S. Su, “RFID-enabled social manufacturing system for inter-enterprise monitoring and dispatching of integrated production and transportation tasks,” Robot. Comput. Integr. Manuf., vol. 49, no. July 2017, pp. 120-133, 2018, doi: 10.1016/j.rcim.2017.06.009. DOI öffnenSearch in Google Scholar

[3] P. Stief, J. Dantan, A. Etienne, and A. Siadat, “The Degree of Mass Personalisation under Industry 4.0 The Degree of Mass Personalisation under A new methodology to analyze functional and physical architecture of existing products for an oriented product family identificati,” Procedia CIRP, vol. 81, pp. 1394-1399, 2019, doi: 10.1016/j.procir.2019.04.050. DOI öffnenSearch in Google Scholar

[4] V. Pontevedra, “Mass Personalization with Industry 4.0 by SMEs: a concept for collaborative networks a concept for collaborative networks Costing models for of capacity in Ind,” Procedia Manuf., vol. 28, pp. 135-141, 2019, doi: 10.1016/j.promfg.2018.12.022. DOI öffnenSearch in Google Scholar

[5] D.A. Coelho, F. Nunes, and F.L. Vieira, “The impact of crowdsourcing in product development : an exploratory study of Quirky based on the perspective of participants,” Int. J. Des. Creat. Innov., vol. 0349, no. September, pp. 1-15, 2016, doi: 10.1080/21650349.2016.1216331. DOI öffnenSearch in Google Scholar

[6] P. Jiang, K. Ding, and J. Leng, “Towards a cyber-physical-social-connected and service-oriented manufacturing paradigm: Social Manufacturing,” Manuf. Lett., vol. 7, pp. 15-21, 2016, doi: 10.1016/j.mfglet.2015.12.002. DOI öffnenSearch in Google Scholar

[7] Y. Lu, “Journal of Industrial Information Integration Industry 4.0: A survey on technologies, applications and open research issues,” J. Ind. Inf. Integr., vol. 6, pp. 1-10, 2017, doi: 10.1016/j.jii.2017.04.005. DOI öffnenSearch in Google Scholar

[8] W. Ying, L. Geok, and S. Jia, “Social informatics of intelligent manufacturing ecosystems: A case study of KuteSmart,” Int. J. Inf. Manage., vol. 42, no. May, pp. 102-105, 2018, doi: 10.1016/j.ijinfomgt.2018.05.002. DOI öffnenSearch in Google Scholar

[9] K. Ding, P. Jiang, J. Leng, and W. Cao, “Modeling and analyzing of an enterprise relationship network in the context of social manufacturing,” 2015, doi: 10.1177/0954405414558730. DOI öffnenSearch in Google Scholar

[10] X. Xiao, W. Shufang, Z. Le-jun, and F. Zhi-yong, “Evaluating of dynamic service matching strategy for social manufacturing in cloud environment,” Futur. Gener. Comput. Syst., vol. 91, pp. 311-326, 2019, doi: 10.1016/j.future.2018.08.028. DOI öffnenSearch in Google Scholar

[11] X.T.R. Kong et al., “Computers & Industrial Engineering Cyber physical ecommerce logistics system : An implementation case in Hong Kong,” Comput. Ind. Eng. vol. 139, no. August 2019, p. 106170, 2020, doi: 10.1016/j.cie.2019.106170. DOI öffnenSearch in Google Scholar

[12] J. Lee, B. Bagheri, and H. Kao, “A Cyber-Physical Systems architecture for Industry 4.0 – based manufacturing systems,” Manuf. Lett., vol. 3, pp. 18-23, 2015, doi: 10.1016/j.mfglet.2014.12.001. DOI öffnenSearch in Google Scholar

[13] C. Kohtala, “Addressing sustainability in research on distributed production : an integrated literature review,” J. Clean. Prod., vol. 106, pp. 654-668, 2015, doi: 10.1016/j.jclepro.2014.09.039. DOI öffnenSearch in Google Scholar

[14] G. Xiong, S. Member, F. Wang, T.R. Nyberg, and X. Shang, “From Mind to Products: Towards Social Manufacturing and Service,” IEEE/CAA J. Autom. Sin., vol. 5, no. 1, pp. 47-57, 2018, doi: 10.1109/JAS.2017.7510742. DOI öffnenSearch in Google Scholar

[15] W. Guo and P. Jiang, “An investigation on establishing small and medium-sized enterprises communities under the environment of social manufacturing,” Concurr. Eng. Res. Appl., vol. 00, no. 0, pp. 1-14, 2018, doi: 10.1177/1063293X18770499. DOI öffnenSearch in Google Scholar

[16] X. Shang et al., “Social Manufacturing for High-end Apparel Customization,” IEEE/CAA J. Autom. Sin., vol. 5, no. 2, pp. 489-500, 2018, doi: 10.1109/JAS.2017.7510832. DOI öffnenSearch in Google Scholar

[17] H. Robert, V. Daniel, and A. Bilal, “Engineering the smart factory Engineering the Smart Factory,” no. October, 2016, doi: 10.3901/CJME.2016.0908.109. DOI öffnenSearch in Google Scholar

[18] M. Hamalainen and J. Karjalainen, “Social manufacturing: When the maker movement meets inter firm production networks,” Bus. Horiz., vol. 60, no. 6, pp. 795-805, 2017, doi: 10.1016/j.bushor.2017.07.007. DOI öffnenSearch in Google Scholar

[19] F. Gregori, A. Papetti, M. Pandolfi, M. Peruzzini, and M. Germani, “Digital manufacturing systems: a framework to improve social sustainability of a production site,” Procedia CIRP, vol. 63, pp. 436-442, 2017, doi: 10.1016/j.procir.2017.03.113. DOI öffnenSearch in Google Scholar

[20] K.D.P. Jiang, “Social Sensors (S 2 ensors): A Kind of Hardware-Software- Integrated Mediators for Social Manufacturing Systems Under Mass Individualization,” Chinese J. Mech. Eng., 2017, doi: 10.1007/s10033-017-0167-4. DOI öffnenSearch in Google Scholar

[21] P. Jiang and J. Leng, “The configuration of social manufacturing: a social intelligence way toward service-oriented manufacturing Pingyu Jiang* and Jiewu Leng,” Int. J. Manuf. Res., vol. 12, no. 1, pp. 4-19, 2017.10.1504/IJMR.2017.083647 Search in Google Scholar

[22] J.P. Arcangeli, R. Boujbel, and S. Leriche, “Automatic deployment of distributed software systems: Definitions and state of the art,” J. Syst. Softw., vol. 103, pp. 198-218, 2015, doi: 10.1016/j.jss.2015.01.040. DOI öffnenSearch in Google Scholar

[23] K. Watcharapanyawong, S. Sirisoponsilp, and P. Sophatsathit, “A Model of Mass Customization for Engineering Production System Development in Textile and Apparel Industries in Thailand,” Syst. Eng. Procedia, vol. 2, pp. 382-397, 2011, doi: 10.1016/j.sepro.2011.10.052. DOI öffnenSearch in Google Scholar

[24] M. Bortolini, F.G. Galizia, and C. Mora, “Reconfigurable manufacturing systems: Literature review and research trend,” J. Manuf. Syst., vol. 49, no. September, pp. 93-106, 2018, doi: 10.1016/j.jmsy.2018.09.005. DOI öffnenSearch in Google Scholar

[25] A. Santana, P. Afonso, A. Zanin, and R. Wernke, “Smart changeable manufacturing systems Costing models for capacity optimization in Industry 4.0: Trade-off between used capacity an,” Procedia Manuf., vol. 28, pp. 3-9, 2018, doi: 10.1016/j.promfg.2018.12.002. DOI öffnenSearch in Google Scholar

[26] A.W.W. Yew, S.K. Ong, and A.Y.C. Nee, “Towards a griddable distributed manufacturing system with augmented reality interfaces,” Robot. Comput. Integr. Manuf., vol. 39, pp. 43-55, 2016, doi: 10.1016/j.rcim.2015.12.002. DOI öffnenSearch in Google Scholar

[27] J. Wang, C. Xu, J. Zhang, J. Bao, and R. Zhong, “A collaborative architecture of the industrial internet platform for manufacturing systems,” Robot. Comput. Integr. Manuf., vol. 61, no. August 2019, 2020, doi: 10.1016/j.rcim.2019.101854. DOI öffnenSearch in Google Scholar

[28] J. Cecil, J. Ramanathan, and J. Huynh, “A shape modification app and cyber-physical framework for collaborative manufacturing,” Procedia Manuf., vol. 34, pp. 932-939, 2019, doi: 10.1016/j.promfg.2019.06.114. DOI öffnenSearch in Google Scholar

[29] A. Fayoumi, “Ecosystem-inspired enterprise modelling framework for collaborative and networked manufacturing systems,” Comput. Ind., vol. 80, pp. 54-68, 2016, doi: 10.1016/j.compind.2016.04.003. DOI öffnenSearch in Google Scholar

[30] J. Liu, Y. Yin, and S. Yan, “Research on clean energy power generation-energy storage-energy using virtual enterprise risk assessment based on fuzzy analytic hierarchy process in China,” J. Clean. Prod., vol. 236, p. 117471, 2019, doi: 10.1016/j.jclepro.2019.06.302. DOI öffnenSearch in Google Scholar

[31] H. Guan, T. Alix, and J.P. Bourrieres, “An integrated design framework for virtual enterprise-based customer-oriented product-service systems,” Procedia CIRP, vol. 83, pp. 198-203, 2019, doi: 10.1016/j.procir.2019.03.143. DOI öffnenSearch in Google Scholar

[32] D. Romero and O. Noran, “Towards Green Sensing Virtual Enterprises: Interconnected Sensing Enterprises, Intelligent Assets and Smart Products in the Cyber-Physical Circular Economy,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 11719-11724, 2017, doi: 10.1016/j.ifacol.2017.08.1944. DOI öffnenSearch in Google Scholar

[33] E. Hofmann and M. Rüsch, “Computers in Industry Industry 4.0 and the current status as well as future prospects on logistics,” Comput. Ind., vol. 89, pp. 23-34, 2017, doi: 10.1016/j.compind.2017.04.002. DOI öffnenSearch in Google Scholar

[34] H. Alkhalefah, “Requirements of the Smart Factory System: A Survey and Perspective,” 2018, doi: 10.3390/machines6020023. DOI öffnenSearch in Google Scholar

[35] W. Guo, P. Li, M. Yang, J. Liu, and P. Jiang, “Social Manufacturing: What are its key fundamentals?,” IFACPapersOnLine, vol. 53, no. 5, pp. 65-70, 2020, doi: 10.1016/j.ifacol.2021.04.126. DOI öffnenSearch in Google Scholar

[36] J. Leng, P. Jiang, and M. Zheng, “Outsourcer – supplier coordination for parts machining outsourcing under social manufacturing,” J. Eng. Manuf., pp. 1-13, 2015, doi: 10.1177/0954405415583883. DOI öffnenSearch in Google Scholar

[37] M. Nicola et al., “The socio-economic implications of the coronavirus pandemic (COVID-19): A review,” Int. J. Surg., vol. 78, no. April, pp. 185-193, 2020, doi: 10.1016/j.ijsu.2020.04.018.716275332305533 DOI öffnenSearch in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo