1. bookVolumen 30 (2022): Edición 3 (September 2022)
Detalles de la revista
License
Formato
Revista
eISSN
2450-5781
Primera edición
30 Mar 2017
Calendario de la edición
4 veces al año
Idiomas
Inglés
access type Acceso abierto

Integrated Production System on Social Manufacturing: A Simulation Study

Publicado en línea: 13 Jul 2022
Volumen & Edición: Volumen 30 (2022) - Edición 3 (September 2022)
Páginas: 230 - 237
Recibido: 01 Sep 2021
Aceptado: 01 Jul 2022
Detalles de la revista
License
Formato
Revista
eISSN
2450-5781
Primera edición
30 Mar 2017
Calendario de la edición
4 veces al año
Idiomas
Inglés
Abstract

Today, the manufacturing industry must adapt to dynamic customer needs, changing from time to time following market trends. So that the production process in manufacturing requires adjustments, one of which is by forming social manufacturing. This study aims to create an integrated production system model based on social manufacturing, which involves several Socialized Manufacturing Resources (SMR) as manufacturing resources that are socialized to produce a product. The methods used are field observation, literature study, design of a social manufacturing-based production system model, model simulation using ProModel software, and analysis of model simulation results. In this study, the simulation involves four SMRs, each of which makes a part that has been given specifications by the manufacturer based on customer requests. The product produced is the Sanitation Chamber, which is equipped with a control system to monitor reading data via the internet. The model simulation uses the Pro Model software and analyzes resource use, location utilization, and resource costs.

Keywords

[1] F.T.Y. Cheng and L.Z.A.Y.C. Nee, “Advanced manufacturing systems : socialization characteristics and trends,” J. Intell. Manuf., vol. 28, no. 5, pp. 1079-1094, 2017, doi: 10.1007/s10845-015-1042-8. Abierto DOISearch in Google Scholar

[2] K. Ding, P. Jiang, and S. Su, “RFID-enabled social manufacturing system for inter-enterprise monitoring and dispatching of integrated production and transportation tasks,” Robot. Comput. Integr. Manuf., vol. 49, no. July 2017, pp. 120-133, 2018, doi: 10.1016/j.rcim.2017.06.009. Abierto DOISearch in Google Scholar

[3] P. Stief, J. Dantan, A. Etienne, and A. Siadat, “The Degree of Mass Personalisation under Industry 4.0 The Degree of Mass Personalisation under A new methodology to analyze functional and physical architecture of existing products for an oriented product family identificati,” Procedia CIRP, vol. 81, pp. 1394-1399, 2019, doi: 10.1016/j.procir.2019.04.050. Abierto DOISearch in Google Scholar

[4] V. Pontevedra, “Mass Personalization with Industry 4.0 by SMEs: a concept for collaborative networks a concept for collaborative networks Costing models for of capacity in Ind,” Procedia Manuf., vol. 28, pp. 135-141, 2019, doi: 10.1016/j.promfg.2018.12.022. Abierto DOISearch in Google Scholar

[5] D.A. Coelho, F. Nunes, and F.L. Vieira, “The impact of crowdsourcing in product development : an exploratory study of Quirky based on the perspective of participants,” Int. J. Des. Creat. Innov., vol. 0349, no. September, pp. 1-15, 2016, doi: 10.1080/21650349.2016.1216331. Abierto DOISearch in Google Scholar

[6] P. Jiang, K. Ding, and J. Leng, “Towards a cyber-physical-social-connected and service-oriented manufacturing paradigm: Social Manufacturing,” Manuf. Lett., vol. 7, pp. 15-21, 2016, doi: 10.1016/j.mfglet.2015.12.002. Abierto DOISearch in Google Scholar

[7] Y. Lu, “Journal of Industrial Information Integration Industry 4.0: A survey on technologies, applications and open research issues,” J. Ind. Inf. Integr., vol. 6, pp. 1-10, 2017, doi: 10.1016/j.jii.2017.04.005. Abierto DOISearch in Google Scholar

[8] W. Ying, L. Geok, and S. Jia, “Social informatics of intelligent manufacturing ecosystems: A case study of KuteSmart,” Int. J. Inf. Manage., vol. 42, no. May, pp. 102-105, 2018, doi: 10.1016/j.ijinfomgt.2018.05.002. Abierto DOISearch in Google Scholar

[9] K. Ding, P. Jiang, J. Leng, and W. Cao, “Modeling and analyzing of an enterprise relationship network in the context of social manufacturing,” 2015, doi: 10.1177/0954405414558730. Abierto DOISearch in Google Scholar

[10] X. Xiao, W. Shufang, Z. Le-jun, and F. Zhi-yong, “Evaluating of dynamic service matching strategy for social manufacturing in cloud environment,” Futur. Gener. Comput. Syst., vol. 91, pp. 311-326, 2019, doi: 10.1016/j.future.2018.08.028. Abierto DOISearch in Google Scholar

[11] X.T.R. Kong et al., “Computers & Industrial Engineering Cyber physical ecommerce logistics system : An implementation case in Hong Kong,” Comput. Ind. Eng. vol. 139, no. August 2019, p. 106170, 2020, doi: 10.1016/j.cie.2019.106170. Abierto DOISearch in Google Scholar

[12] J. Lee, B. Bagheri, and H. Kao, “A Cyber-Physical Systems architecture for Industry 4.0 – based manufacturing systems,” Manuf. Lett., vol. 3, pp. 18-23, 2015, doi: 10.1016/j.mfglet.2014.12.001. Abierto DOISearch in Google Scholar

[13] C. Kohtala, “Addressing sustainability in research on distributed production : an integrated literature review,” J. Clean. Prod., vol. 106, pp. 654-668, 2015, doi: 10.1016/j.jclepro.2014.09.039. Abierto DOISearch in Google Scholar

[14] G. Xiong, S. Member, F. Wang, T.R. Nyberg, and X. Shang, “From Mind to Products: Towards Social Manufacturing and Service,” IEEE/CAA J. Autom. Sin., vol. 5, no. 1, pp. 47-57, 2018, doi: 10.1109/JAS.2017.7510742. Abierto DOISearch in Google Scholar

[15] W. Guo and P. Jiang, “An investigation on establishing small and medium-sized enterprises communities under the environment of social manufacturing,” Concurr. Eng. Res. Appl., vol. 00, no. 0, pp. 1-14, 2018, doi: 10.1177/1063293X18770499. Abierto DOISearch in Google Scholar

[16] X. Shang et al., “Social Manufacturing for High-end Apparel Customization,” IEEE/CAA J. Autom. Sin., vol. 5, no. 2, pp. 489-500, 2018, doi: 10.1109/JAS.2017.7510832. Abierto DOISearch in Google Scholar

[17] H. Robert, V. Daniel, and A. Bilal, “Engineering the smart factory Engineering the Smart Factory,” no. October, 2016, doi: 10.3901/CJME.2016.0908.109. Abierto DOISearch in Google Scholar

[18] M. Hamalainen and J. Karjalainen, “Social manufacturing: When the maker movement meets inter firm production networks,” Bus. Horiz., vol. 60, no. 6, pp. 795-805, 2017, doi: 10.1016/j.bushor.2017.07.007. Abierto DOISearch in Google Scholar

[19] F. Gregori, A. Papetti, M. Pandolfi, M. Peruzzini, and M. Germani, “Digital manufacturing systems: a framework to improve social sustainability of a production site,” Procedia CIRP, vol. 63, pp. 436-442, 2017, doi: 10.1016/j.procir.2017.03.113. Abierto DOISearch in Google Scholar

[20] K.D.P. Jiang, “Social Sensors (S 2 ensors): A Kind of Hardware-Software- Integrated Mediators for Social Manufacturing Systems Under Mass Individualization,” Chinese J. Mech. Eng., 2017, doi: 10.1007/s10033-017-0167-4. Abierto DOISearch in Google Scholar

[21] P. Jiang and J. Leng, “The configuration of social manufacturing: a social intelligence way toward service-oriented manufacturing Pingyu Jiang* and Jiewu Leng,” Int. J. Manuf. Res., vol. 12, no. 1, pp. 4-19, 2017.10.1504/IJMR.2017.083647 Search in Google Scholar

[22] J.P. Arcangeli, R. Boujbel, and S. Leriche, “Automatic deployment of distributed software systems: Definitions and state of the art,” J. Syst. Softw., vol. 103, pp. 198-218, 2015, doi: 10.1016/j.jss.2015.01.040. Abierto DOISearch in Google Scholar

[23] K. Watcharapanyawong, S. Sirisoponsilp, and P. Sophatsathit, “A Model of Mass Customization for Engineering Production System Development in Textile and Apparel Industries in Thailand,” Syst. Eng. Procedia, vol. 2, pp. 382-397, 2011, doi: 10.1016/j.sepro.2011.10.052. Abierto DOISearch in Google Scholar

[24] M. Bortolini, F.G. Galizia, and C. Mora, “Reconfigurable manufacturing systems: Literature review and research trend,” J. Manuf. Syst., vol. 49, no. September, pp. 93-106, 2018, doi: 10.1016/j.jmsy.2018.09.005. Abierto DOISearch in Google Scholar

[25] A. Santana, P. Afonso, A. Zanin, and R. Wernke, “Smart changeable manufacturing systems Costing models for capacity optimization in Industry 4.0: Trade-off between used capacity an,” Procedia Manuf., vol. 28, pp. 3-9, 2018, doi: 10.1016/j.promfg.2018.12.002. Abierto DOISearch in Google Scholar

[26] A.W.W. Yew, S.K. Ong, and A.Y.C. Nee, “Towards a griddable distributed manufacturing system with augmented reality interfaces,” Robot. Comput. Integr. Manuf., vol. 39, pp. 43-55, 2016, doi: 10.1016/j.rcim.2015.12.002. Abierto DOISearch in Google Scholar

[27] J. Wang, C. Xu, J. Zhang, J. Bao, and R. Zhong, “A collaborative architecture of the industrial internet platform for manufacturing systems,” Robot. Comput. Integr. Manuf., vol. 61, no. August 2019, 2020, doi: 10.1016/j.rcim.2019.101854. Abierto DOISearch in Google Scholar

[28] J. Cecil, J. Ramanathan, and J. Huynh, “A shape modification app and cyber-physical framework for collaborative manufacturing,” Procedia Manuf., vol. 34, pp. 932-939, 2019, doi: 10.1016/j.promfg.2019.06.114. Abierto DOISearch in Google Scholar

[29] A. Fayoumi, “Ecosystem-inspired enterprise modelling framework for collaborative and networked manufacturing systems,” Comput. Ind., vol. 80, pp. 54-68, 2016, doi: 10.1016/j.compind.2016.04.003. Abierto DOISearch in Google Scholar

[30] J. Liu, Y. Yin, and S. Yan, “Research on clean energy power generation-energy storage-energy using virtual enterprise risk assessment based on fuzzy analytic hierarchy process in China,” J. Clean. Prod., vol. 236, p. 117471, 2019, doi: 10.1016/j.jclepro.2019.06.302. Abierto DOISearch in Google Scholar

[31] H. Guan, T. Alix, and J.P. Bourrieres, “An integrated design framework for virtual enterprise-based customer-oriented product-service systems,” Procedia CIRP, vol. 83, pp. 198-203, 2019, doi: 10.1016/j.procir.2019.03.143. Abierto DOISearch in Google Scholar

[32] D. Romero and O. Noran, “Towards Green Sensing Virtual Enterprises: Interconnected Sensing Enterprises, Intelligent Assets and Smart Products in the Cyber-Physical Circular Economy,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 11719-11724, 2017, doi: 10.1016/j.ifacol.2017.08.1944. Abierto DOISearch in Google Scholar

[33] E. Hofmann and M. Rüsch, “Computers in Industry Industry 4.0 and the current status as well as future prospects on logistics,” Comput. Ind., vol. 89, pp. 23-34, 2017, doi: 10.1016/j.compind.2017.04.002. Abierto DOISearch in Google Scholar

[34] H. Alkhalefah, “Requirements of the Smart Factory System: A Survey and Perspective,” 2018, doi: 10.3390/machines6020023. Abierto DOISearch in Google Scholar

[35] W. Guo, P. Li, M. Yang, J. Liu, and P. Jiang, “Social Manufacturing: What are its key fundamentals?,” IFACPapersOnLine, vol. 53, no. 5, pp. 65-70, 2020, doi: 10.1016/j.ifacol.2021.04.126. Abierto DOISearch in Google Scholar

[36] J. Leng, P. Jiang, and M. Zheng, “Outsourcer – supplier coordination for parts machining outsourcing under social manufacturing,” J. Eng. Manuf., pp. 1-13, 2015, doi: 10.1177/0954405415583883. Abierto DOISearch in Google Scholar

[37] M. Nicola et al., “The socio-economic implications of the coronavirus pandemic (COVID-19): A review,” Int. J. Surg., vol. 78, no. April, pp. 185-193, 2020, doi: 10.1016/j.ijsu.2020.04.018.716275332305533 Abierto DOISearch in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo