1. bookVolume 30 (2022): Edizione 2 (June 2022)
Dettagli della rivista
Prima pubblicazione
30 Mar 2017
Frequenza di pubblicazione
4 volte all'anno
access type Accesso libero

Prediction Model of the Pandemic Spreading Based on Weibull Distribution

Pubblicato online: 19 May 2022
Volume & Edizione: Volume 30 (2022) - Edizione 2 (June 2022)
Pagine: 179 - 186
Ricevuto: 01 Jan 2022
Accettato: 01 Apr 2022
Dettagli della rivista
Prima pubblicazione
30 Mar 2017
Frequenza di pubblicazione
4 volte all'anno

Pandemics have the potential to cause immense disruption of our everyday activities and has impact on the communities and societies mainly through the restrictions applied to the business activities, services, manufacturing, but also education, transportation etc. Therefore, it is important to create suitable prediction models to establish convenient methods for the planning of the operations and processes to cope with the difficulty. In this paper, the prediction model for the spread of the viral disease in term of the estimated maximal weekly confirmed cases and weekly deaths using the Weibull distribution as a theoretical model for statistical data processing is presented. The theoretical prediction model was applied and confirmed on the data available for the whole world and compared to the situation in Europe and Slovakia for the pandemic waves and can be used for the more precise prediction of the pandemic situation and to enhance planning of the activities and processes regarding to the restrictions applied during the worsening pandemic situation.


[1] A. Micheletti, N. Araújo, A. Budko, Carpio and M. Ehrhardt. “Mathematical models of the spread and consequences of the SARS-CoV-2 pandemics: Effects on health, society, industry, economics and technology”. Journal of Mathematics in Industry, vol. 11(1),15, 2021. doi: 10.1186/s13362-021-00111-w10.1186/s13362-021-00111-w845138834567932 Search in Google Scholar

[2] A.W. Tesfaye and T.S. Satana. “Stochastic model of the transmission dynamics of COVID-19 pandemic”. Advances in Difference Equations, vol. 2021(1), 457, 2021. doi: 10.1186/s13662-021-03597-110.1186/s13662-021-03597-1852130134691161 Search in Google Scholar

[3] H.M. Sabri, A.M. Gamal El-Din and L. Aladel. “Forecasting COVID-19 Pandemic Using Linear Regression Model”. Lecture Notes in Networks and Systems, vol. 224, pp. 507-520, 2022. doi: 10.1007/978-981-16-2275-5_3210.1007/978-981-16-2275-5_32 Search in Google Scholar

[4] A.K. Gupta, V. Singh, P. Mathur and C.M. Travieso-Gonzalez. “Prediction of COVID-19 pandemic measuring criteria using support vector machine, prophet and linear regression models in Indian scenario”. Journal of Interdisciplinary Mathematics, vol. 24(1), pp. 89-108, 2021. doi: 10.1080/09720502.2020.183345810.1080/09720502.2020.1833458 Search in Google Scholar

[5] P. Guha. “Spatiotemporal Analysis of COVID-19 Pandemic and Predictive Models based on Artificial Intelligence for different States of India”. Journal of The Institution of Engineers (India): Series B, vol. 102(6), pp. 1265-1274, 2021. doi: 10.1007/s40031-021-00617-210.1007/s40031-021-00617-2 Search in Google Scholar

[6] A.I. Shahin and S. Almotairi. “A deep learning BiLSTM encoding-decoding model for COVID-19 pandemic spread forecasting”. Fractal and Fractional, vol. 5(4),175, 2021. doi: 10.3390/fractalfract504017510.3390/fractalfract5040175 Search in Google Scholar

[7] M. Humayun and A. Alsayat. “Prediction Model for Coronavirus Pandemic Using Deep Learning”. Computer Systems Science and Engineering, vol. 40(3), pp. 947-961, 2021. doi: 10.32604/CSSE.2022.01928810.32604/csse.2022.019288 Search in Google Scholar

[8] M.K. Sharma, N. Dhiman, Vandana and V.N. Mishra. “Mediative fuzzy logic mathematical model: A contradictory management prediction in COVID-19 pandemic”. Applied Soft Computing, vol. 105,107285, 2021. doi: 10.1016/j.asoc.2021.10728510.1016/j.asoc.2021.107285794216233723486 Search in Google Scholar

[9] A. Safari, R. Hosseini and M. Mazinani. “A novel deep interval type-2 fuzzy LSTM (DIT2FLSTM) model applied to COVID-19 pandemic time-series prediction”. Journal of Biomedical Informatics, vol. 123,103920, 2021. doi: 10.1016/j.jbi.2021.10392010.1016/j.jbi.2021.103920848254834601140 Search in Google Scholar

[10] B. Cheng and Y.-M. Wang. “A logistic model and predictions for the spread of the COVID-19 pandemic”. Chaos, vol. 30(12),123135, 2020. doi: 10.1063/5.002823610.1063/5.002823633380055 Search in Google Scholar

[11] S.L. Smith, J. Shiffman, Y.R. Shawar and Z.C. Shroff. “The rise and fall of global health issues: an arenas model applied to the COVID-19 pandemic shock”. Globalization and Health, vol. 17(1),33, 2021. doi: 10.1186/s12992-021-00691-710.1186/s12992-021-00691-7800612733781272 Search in Google Scholar

[12] R. Wang, C. Ji, Z. Jiang, Z., Y. Wu, L. Yin and Y. Li. “A Short-Term Prediction Model at the Early Stage of the COVID-19 Pandemic Based on Multisource Urban Data”. IEEE Transactions on Computational Social Systems, vol. 8(4),9371309, pp. 1021-1028, 2021. doi: 10.1109/TCSS.2021.306095210.1109/TCSS.2021.3060952886494235582632 Search in Google Scholar

[13] S. Cabaro, V., D’Esposito, T. Di Matola, T.S. Sale, M. Cennamo, D. Terracciano, V. Parisi, F. Oriente, G. Portella, F. Beguinot, L. Atripaldi, M. Sansone, and P. Formisano. “Cytokine signature and COVID-19 prediction models in the two waves of pandemics”. Scientific Reports, vol. 11(1),20793, 2021. doi: 10.1038/s41598-021-00190-010.1038/s41598-021-00190-0853134634675240 Search in Google Scholar

[14] E. Berbenni and S. Colombo. “The impact of pandemics: revising the Spanish Flu in Italy in light of models’ predictions, and some lessons for the COVID-19 pandemic”. Journal of Industrial and Business Economics, vol. 48(2), pp. 219-243, 2021. doi: 10.1007/s40812-021-00182-110.1007/s40812-021-00182-1 Search in Google Scholar

[15] A.M.B. de Oliveira, J.M. Binner, A. Mandal, L. Kelly and G.J. Power. “Using GAM functions and Markov-Switching models in an evaluation framework to assess countries’ performance in controlling the COVID-19 pandemic”. BMC Public Health, vol. 21(1),2173, 2021. doi: 10.1186/s12889-021-11891-610.1186/s12889-021-11891-6862673534837982 Search in Google Scholar

[16] A.K. Dhaiban and B.K. Jabbar. “An optimal control model of COVID-19 pandemic: a comparative study of five countries”. OPSEARCH, vol. 58(4), pp. 790-809, 2021. doi: 10.1007/s12597-020-00491-410.1007/s12597-020-00491-4 Search in Google Scholar

[17] C. Donadee and K.E. Rudd. “Mortality prediction models: Another barrier to racial equity in a pandemic”. American Journal of Respiratory and Critical Care Medicine, vol. 204(2), pp. 120-121, 2021. doi: 10.1164/rccm.202103-0809ED10.1164/rccm.202103-0809ED865078633945776 Search in Google Scholar

[18] M. Saban, V. Myers, O. Luxenburg and R. Wilf-Miron. “Tipping the scales: a theoretical model to describe the differential effects of the COVID-19 pandemic on mortality”. International Journal for Equity in Health, vol. 20(1),140, 2021. doi: 10.1186/s12939-021-01470-x10.1186/s12939-021-01470-x820689734134710 Search in Google Scholar

[19] J. Jankhonkhan and W. Sawangtong. “Model predictive control of COVID-19 pandemic with social isolation and vaccination policies in Thailand”. Axioms, vol. 10(4),274, 2021. doi: 10.3390/axioms1004027410.3390/axioms10040274 Search in Google Scholar

[20] T. Akamatsu, T. Nagae, M., Osawa, K. Satsukawa, T. Sakai and D. Mizutani. „Model-based analysis on social acceptability and feasibility of a focused protection strategy against the COVID-19 pandemic”. Scientific Reports, vol. 11(1),2003, 2021. doi: 10.1038/s41598-021-81630-910.1038/s41598-021-81630-9782046333479450 Search in Google Scholar

[21] X. Tang, Z. Li, X. Hu, Z. Xu and L. Peng. “Self-correcting error-based prediction model for the COVID-19 pandemic and analysis of economic impacts”. Sustainable Cities and Society, vol. 74,103219, 2021. doi: 10.1016/j.scs.2021.10321910.1016/j.scs.2021.103219 Search in Google Scholar

[22] K.C. Kiptum. “Logistic model for adherence to ministry of health protocols and guidelines by public transport vehicles in Kenya during COVID-19 pandemic”. Engineering and Applied Science Research, vol. 49(1), pp. 88-95, 2022. doi: 10.14456/easr.2022.10 Search in Google Scholar

[23] F. Jiao, L. Huang, R. Song and H. Huang. “An improved stllstm model for daily bus passenger flow prediction during the COVID-19 pandemic”. Sensors, vol. 21(17),5950, 2021. doi: 10.3390/s2117595010.3390/s21175950843462134502841 Search in Google Scholar

[24] H.-S. Lee, E.A. Degtereva and A.M. Zobov. “The impact of the COVID-19 pandemic on cross-border mergers and acquisitions’ determinants: New empirical evidence from quasi-poisson and negative binomial regression models”. Economies, vol. 9(4),184, 2021. doi: 10.3390/economies904018410.3390/economies9040184 Search in Google Scholar

[25] A.K. Konyalıoğlu, T. Beldek, and T. Özcan. “An Optimized Nonlinear Grey Bernoulli Model for Forecasting the Electricity Consumption During COVID-19 Pandemic: A Case for Turkey”. Lecture Notes in Networks and Systems, vol. 307, pp. 649-656, 2022. doi: 10.1007/978-3-030-85626-7_76 Search in Google Scholar

[26] A. Maštalský and E. Dolný. “Behavioral models of isolated individuals and entities”. Acta Avionica, vol. 24 (2), pp. 25-30, 2021. doi: 10.35116/aa.2021.001310.35116/aa.2021.0013 Search in Google Scholar

[27] W. Weibull. “A Statistical Distribution Function of Wide Applicability”. Journal of Applied Mechanics, pp. 293-297, 1951.10.1115/1.4010337 Search in Google Scholar

[28] T. Thanh Thach and R. Briš. “An additive Chen-Weibull distribution and its applications in reliability modeling”. Quality and Reliability Engineering International, vol. 37(1), pp. 352-373. 2021. doi: 10.1002/qre.274010.1002/qre.2740 Search in Google Scholar

[29] C.W. Zhang “Weibull parameter estimation and reliability analysis with zero-failure data from high-quality products”. Reliability Engineering and System Safety, vol. 207, 107321, 2021. doi: 10.1016/j.ress.2020.10732110.1016/j.ress.2020.107321 Search in Google Scholar

[30] B. Silahli, K.D. Dingec, A. Cifter, and N. Aydin. “Portfolio value-at-risk with two-sided Weibull distribution: Evidence from cryptocurrency markets”. Finance Research Letters, vol. 38, 101425, 2021. doi: 10.1016/j.frl.2019.101425.10.1016/j.frl.2019.101425 Search in Google Scholar

[31] R. Alshenawy, A. Al-Alwan, E.M. Almetwally, A.Z. Afify and H.M. Almongy. “Progressive type-ii censoring schemes of extended odd Weibull exponential distribution with applications in medicine and engineering”. Mathematics, Vol. 8(10), 1679, pp. 1-19, 2020. doi: 10.3390/math810167910.3390/math8101679 Search in Google Scholar

[32] S.M.M. Rahman, J. Kim and B. Laratte. “Disruption in Circularity? Impact analysis of COVID-19 on ship recycling using Weibull tonnage estimation and scenario analysis method”. Resources, Conservation and Recycling, vol. 164, 105139, 2021. doi: 10.1016/j.resconrec.2020.10513910.1016/j.resconrec.2020.105139745511032904429 Search in Google Scholar

[33] A. Abebaw Gessesse and R. Mishra. “Genetic Algorithm-Based Fuzzy Programming Method for Multi-objective Stochastic Transportation Problem Involving Three-Parameter Weibull Distribution”. Advances in Intelligent Systems and Computing,, vol. 1170, pp. 155-167. 2021. doi: 10.1007/978-981-15-5411-7_1110.1007/978-981-15-5411-7_11 Search in Google Scholar

[34] K. Draganová, K. Semrád, M. Blišťanová, T. Musil and R. Jurč. “Influence of disinfectants on airport conveyor belts”. Sustainability (Switzerland), vol. 13(19),10842, 2021. doi: 10.3390/su13191084210.3390/su131910842 Search in Google Scholar

[35] P. Niu, Z. Wang, S. Liu and K. Jia. “Demand Forecast of Restoring Air Material of Helicopter Based on NHPP and Weibull Model”. Journal of Physics: Conference Series, vol. 1676(1), 012089, 2020. doi: 10.1088/1742-6596/1676/1/01208910.1088/1742-6596/1676/1/012089 Search in Google Scholar

[36] P. Strzelecki. “Determination of fatigue life for low probability of failure for different stress levels using 3-parameter Weibull distribution”. International Journal of Fatigue, vol. 145, 2021. doi: 10.1016/j.ijfatigue.2020.10608010.1016/j.ijfatigue.2020.106080 Search in Google Scholar

[37] K. Semrád, J. Čerňan and K. Draganová. “Rolling Contact Fatigue Life Evaluation Using Weibull Distribution”. Mechanics, Materials Science & Engineering Journal. vol. 2(3), p. 28-33, 2016. doi: 10.13140/RG.2.1.3338.9849 Search in Google Scholar

[38] Y. Wang, Z. Chen, Y. Zhang, X. Li and Z. Li. “Remaining useful life prediction of rolling bearings based on the three-parameter Weibull distribution proportional hazards model”. Insight: Non-Destructive Testing and Condition Monitoring, vol. 62(12), pp. 710-718, 2021. doi: 10.1784/INSI.2020.62.12.71010.1784/insi.2020.62.12.710 Search in Google Scholar

[39] W.-S. Lei, Z. Yu, P. Zhang and G. Qian. “Standardized Weibull statistics of ceramic strength”. Ceramics International, vol. 47(4), pp. 4972-4993, 2021. doi: 10.1016/j.ceramint.2020.10.07310.1016/j.ceramint.2020.10.073 Search in Google Scholar

[40] K. Semrád, K. Draganová, P. Košcák, and J. Cernan. “Statistical prediction models of impact damage of airport conveyor belts”. Transportation Research Procedia, vol. 51, pp. 11-19, 2020. doi: 10.1016/j.trpro.2020.11.00310.1016/j.trpro.2020.11.003 Search in Google Scholar

[41] B. Belhadj, L. Abdelkader and A. Chateauneuf. “Weibull probabilistic model of moisture concentration build up in a fiber graphite/epoxy polymer composite under varying hydrothermal conditions”. Periodica Polytechnica Mechanical Engineering, vol. 65(1), pp. 27-38, 2021. doi: 10.3311/PPme.1365310.3311/PPme.13653 Search in Google Scholar

[42] S. Guo, X. Wang, Y. Liu, X. Zhu and Y. Zhai, “A comparison study of three types of parameter estimation methods on weibull model”. Advances in Intelligent Systems and Computing, vol. 1244 AISC, pp. 706-711, 2021. doi: 10.1007/978-3-030-53980-1_10310.1007/978-3-030-53980-1_103 Search in Google Scholar

[43] M. Sumair, T. Aized, S.A.R. Gardezi, S.U.U. Rehman and S.M.S. Rehman. “A novel method developed to estimate Weibull parameters”. Energy Reports, vol. 6, pp. 1715-1733, 2020. doi: 10.1016/j.egyr.2020.06.01710.1016/j.egyr.2020.06.017 Search in Google Scholar

[44] H. Saboori, G. Barmalzan and S.M. Ayat. “Generalized Modified Inverse Weibull Distribution: Its Properties and Applications”. Sankhya B, vol. 82(2), pp. 247-269, 2020. doi: 10.1007/s13571-018-0182-110.1007/s13571-018-0182-1 Search in Google Scholar

[45] L. Hongxiang, F.P. Shan and S. Baofeng. “A comparative study of modified Weibull distributions in proportional hazards models”. AIP Conference Proceedings, vol. 2266, 090011, 2020. doi: 10.1063/5.001842810.1063/5.0018428 Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo