INFORMAZIONI SU QUESTO ARTICOLO

Cita

[1] A. Micheletti, N. Araújo, A. Budko, Carpio and M. Ehrhardt. “Mathematical models of the spread and consequences of the SARS-CoV-2 pandemics: Effects on health, society, industry, economics and technology”. Journal of Mathematics in Industry, vol. 11(1),15, 2021. doi: 10.1186/s13362-021-00111-w10.1186/s13362-021-00111-w845138834567932 Search in Google Scholar

[2] A.W. Tesfaye and T.S. Satana. “Stochastic model of the transmission dynamics of COVID-19 pandemic”. Advances in Difference Equations, vol. 2021(1), 457, 2021. doi: 10.1186/s13662-021-03597-110.1186/s13662-021-03597-1852130134691161 Search in Google Scholar

[3] H.M. Sabri, A.M. Gamal El-Din and L. Aladel. “Forecasting COVID-19 Pandemic Using Linear Regression Model”. Lecture Notes in Networks and Systems, vol. 224, pp. 507-520, 2022. doi: 10.1007/978-981-16-2275-5_3210.1007/978-981-16-2275-5_32 Search in Google Scholar

[4] A.K. Gupta, V. Singh, P. Mathur and C.M. Travieso-Gonzalez. “Prediction of COVID-19 pandemic measuring criteria using support vector machine, prophet and linear regression models in Indian scenario”. Journal of Interdisciplinary Mathematics, vol. 24(1), pp. 89-108, 2021. doi: 10.1080/09720502.2020.183345810.1080/09720502.2020.1833458 Search in Google Scholar

[5] P. Guha. “Spatiotemporal Analysis of COVID-19 Pandemic and Predictive Models based on Artificial Intelligence for different States of India”. Journal of The Institution of Engineers (India): Series B, vol. 102(6), pp. 1265-1274, 2021. doi: 10.1007/s40031-021-00617-210.1007/s40031-021-00617-2 Search in Google Scholar

[6] A.I. Shahin and S. Almotairi. “A deep learning BiLSTM encoding-decoding model for COVID-19 pandemic spread forecasting”. Fractal and Fractional, vol. 5(4),175, 2021. doi: 10.3390/fractalfract504017510.3390/fractalfract5040175 Search in Google Scholar

[7] M. Humayun and A. Alsayat. “Prediction Model for Coronavirus Pandemic Using Deep Learning”. Computer Systems Science and Engineering, vol. 40(3), pp. 947-961, 2021. doi: 10.32604/CSSE.2022.01928810.32604/csse.2022.019288 Search in Google Scholar

[8] M.K. Sharma, N. Dhiman, Vandana and V.N. Mishra. “Mediative fuzzy logic mathematical model: A contradictory management prediction in COVID-19 pandemic”. Applied Soft Computing, vol. 105,107285, 2021. doi: 10.1016/j.asoc.2021.10728510.1016/j.asoc.2021.107285794216233723486 Search in Google Scholar

[9] A. Safari, R. Hosseini and M. Mazinani. “A novel deep interval type-2 fuzzy LSTM (DIT2FLSTM) model applied to COVID-19 pandemic time-series prediction”. Journal of Biomedical Informatics, vol. 123,103920, 2021. doi: 10.1016/j.jbi.2021.10392010.1016/j.jbi.2021.103920848254834601140 Search in Google Scholar

[10] B. Cheng and Y.-M. Wang. “A logistic model and predictions for the spread of the COVID-19 pandemic”. Chaos, vol. 30(12),123135, 2020. doi: 10.1063/5.002823610.1063/5.002823633380055 Search in Google Scholar

[11] S.L. Smith, J. Shiffman, Y.R. Shawar and Z.C. Shroff. “The rise and fall of global health issues: an arenas model applied to the COVID-19 pandemic shock”. Globalization and Health, vol. 17(1),33, 2021. doi: 10.1186/s12992-021-00691-710.1186/s12992-021-00691-7800612733781272 Search in Google Scholar

[12] R. Wang, C. Ji, Z. Jiang, Z., Y. Wu, L. Yin and Y. Li. “A Short-Term Prediction Model at the Early Stage of the COVID-19 Pandemic Based on Multisource Urban Data”. IEEE Transactions on Computational Social Systems, vol. 8(4),9371309, pp. 1021-1028, 2021. doi: 10.1109/TCSS.2021.306095210.1109/TCSS.2021.3060952886494235582632 Search in Google Scholar

[13] S. Cabaro, V., D’Esposito, T. Di Matola, T.S. Sale, M. Cennamo, D. Terracciano, V. Parisi, F. Oriente, G. Portella, F. Beguinot, L. Atripaldi, M. Sansone, and P. Formisano. “Cytokine signature and COVID-19 prediction models in the two waves of pandemics”. Scientific Reports, vol. 11(1),20793, 2021. doi: 10.1038/s41598-021-00190-010.1038/s41598-021-00190-0853134634675240 Search in Google Scholar

[14] E. Berbenni and S. Colombo. “The impact of pandemics: revising the Spanish Flu in Italy in light of models’ predictions, and some lessons for the COVID-19 pandemic”. Journal of Industrial and Business Economics, vol. 48(2), pp. 219-243, 2021. doi: 10.1007/s40812-021-00182-110.1007/s40812-021-00182-1 Search in Google Scholar

[15] A.M.B. de Oliveira, J.M. Binner, A. Mandal, L. Kelly and G.J. Power. “Using GAM functions and Markov-Switching models in an evaluation framework to assess countries’ performance in controlling the COVID-19 pandemic”. BMC Public Health, vol. 21(1),2173, 2021. doi: 10.1186/s12889-021-11891-610.1186/s12889-021-11891-6862673534837982 Search in Google Scholar

[16] A.K. Dhaiban and B.K. Jabbar. “An optimal control model of COVID-19 pandemic: a comparative study of five countries”. OPSEARCH, vol. 58(4), pp. 790-809, 2021. doi: 10.1007/s12597-020-00491-410.1007/s12597-020-00491-4 Search in Google Scholar

[17] C. Donadee and K.E. Rudd. “Mortality prediction models: Another barrier to racial equity in a pandemic”. American Journal of Respiratory and Critical Care Medicine, vol. 204(2), pp. 120-121, 2021. doi: 10.1164/rccm.202103-0809ED10.1164/rccm.202103-0809ED865078633945776 Search in Google Scholar

[18] M. Saban, V. Myers, O. Luxenburg and R. Wilf-Miron. “Tipping the scales: a theoretical model to describe the differential effects of the COVID-19 pandemic on mortality”. International Journal for Equity in Health, vol. 20(1),140, 2021. doi: 10.1186/s12939-021-01470-x10.1186/s12939-021-01470-x820689734134710 Search in Google Scholar

[19] J. Jankhonkhan and W. Sawangtong. “Model predictive control of COVID-19 pandemic with social isolation and vaccination policies in Thailand”. Axioms, vol. 10(4),274, 2021. doi: 10.3390/axioms1004027410.3390/axioms10040274 Search in Google Scholar

[20] T. Akamatsu, T. Nagae, M., Osawa, K. Satsukawa, T. Sakai and D. Mizutani. „Model-based analysis on social acceptability and feasibility of a focused protection strategy against the COVID-19 pandemic”. Scientific Reports, vol. 11(1),2003, 2021. doi: 10.1038/s41598-021-81630-910.1038/s41598-021-81630-9782046333479450 Search in Google Scholar

[21] X. Tang, Z. Li, X. Hu, Z. Xu and L. Peng. “Self-correcting error-based prediction model for the COVID-19 pandemic and analysis of economic impacts”. Sustainable Cities and Society, vol. 74,103219, 2021. doi: 10.1016/j.scs.2021.10321910.1016/j.scs.2021.103219 Search in Google Scholar

[22] K.C. Kiptum. “Logistic model for adherence to ministry of health protocols and guidelines by public transport vehicles in Kenya during COVID-19 pandemic”. Engineering and Applied Science Research, vol. 49(1), pp. 88-95, 2022. doi: 10.14456/easr.2022.10 Search in Google Scholar

[23] F. Jiao, L. Huang, R. Song and H. Huang. “An improved stllstm model for daily bus passenger flow prediction during the COVID-19 pandemic”. Sensors, vol. 21(17),5950, 2021. doi: 10.3390/s2117595010.3390/s21175950843462134502841 Search in Google Scholar

[24] H.-S. Lee, E.A. Degtereva and A.M. Zobov. “The impact of the COVID-19 pandemic on cross-border mergers and acquisitions’ determinants: New empirical evidence from quasi-poisson and negative binomial regression models”. Economies, vol. 9(4),184, 2021. doi: 10.3390/economies904018410.3390/economies9040184 Search in Google Scholar

[25] A.K. Konyalıoğlu, T. Beldek, and T. Özcan. “An Optimized Nonlinear Grey Bernoulli Model for Forecasting the Electricity Consumption During COVID-19 Pandemic: A Case for Turkey”. Lecture Notes in Networks and Systems, vol. 307, pp. 649-656, 2022. doi: 10.1007/978-3-030-85626-7_7610.1007/978-3-030-85626-7_76 Search in Google Scholar

[26] A. Maštalský and E. Dolný. “Behavioral models of isolated individuals and entities”. Acta Avionica, vol. 24 (2), pp. 25-30, 2021. doi: 10.35116/aa.2021.001310.35116/aa.2021.0013 Search in Google Scholar

[27] W. Weibull. “A Statistical Distribution Function of Wide Applicability”. Journal of Applied Mechanics, pp. 293-297, 1951.10.1115/1.4010337 Search in Google Scholar

[28] T. Thanh Thach and R. Briš. “An additive Chen-Weibull distribution and its applications in reliability modeling”. Quality and Reliability Engineering International, vol. 37(1), pp. 352-373. 2021. doi: 10.1002/qre.274010.1002/qre.2740 Search in Google Scholar

[29] C.W. Zhang “Weibull parameter estimation and reliability analysis with zero-failure data from high-quality products”. Reliability Engineering and System Safety, vol. 207, 107321, 2021. doi: 10.1016/j.ress.2020.10732110.1016/j.ress.2020.107321 Search in Google Scholar

[30] B. Silahli, K.D. Dingec, A. Cifter, and N. Aydin. “Portfolio value-at-risk with two-sided Weibull distribution: Evidence from cryptocurrency markets”. Finance Research Letters, vol. 38, 101425, 2021. doi: 10.1016/j.frl.2019.101425.10.1016/j.frl.2019.101425 Search in Google Scholar

[31] R. Alshenawy, A. Al-Alwan, E.M. Almetwally, A.Z. Afify and H.M. Almongy. “Progressive type-ii censoring schemes of extended odd Weibull exponential distribution with applications in medicine and engineering”. Mathematics, Vol. 8(10), 1679, pp. 1-19, 2020. doi: 10.3390/math810167910.3390/math8101679 Search in Google Scholar

[32] S.M.M. Rahman, J. Kim and B. Laratte. “Disruption in Circularity? Impact analysis of COVID-19 on ship recycling using Weibull tonnage estimation and scenario analysis method”. Resources, Conservation and Recycling, vol. 164, 105139, 2021. doi: 10.1016/j.resconrec.2020.10513910.1016/j.resconrec.2020.105139745511032904429 Search in Google Scholar

[33] A. Abebaw Gessesse and R. Mishra. “Genetic Algorithm-Based Fuzzy Programming Method for Multi-objective Stochastic Transportation Problem Involving Three-Parameter Weibull Distribution”. Advances in Intelligent Systems and Computing,, vol. 1170, pp. 155-167. 2021. doi: 10.1007/978-981-15-5411-7_1110.1007/978-981-15-5411-7_11 Search in Google Scholar

[34] K. Draganová, K. Semrád, M. Blišťanová, T. Musil and R. Jurč. “Influence of disinfectants on airport conveyor belts”. Sustainability (Switzerland), vol. 13(19),10842, 2021. doi: 10.3390/su13191084210.3390/su131910842 Search in Google Scholar

[35] P. Niu, Z. Wang, S. Liu and K. Jia. “Demand Forecast of Restoring Air Material of Helicopter Based on NHPP and Weibull Model”. Journal of Physics: Conference Series, vol. 1676(1), 012089, 2020. doi: 10.1088/1742-6596/1676/1/01208910.1088/1742-6596/1676/1/012089 Search in Google Scholar

[36] P. Strzelecki. “Determination of fatigue life for low probability of failure for different stress levels using 3-parameter Weibull distribution”. International Journal of Fatigue, vol. 145, 2021. doi: 10.1016/j.ijfatigue.2020.10608010.1016/j.ijfatigue.2020.106080 Search in Google Scholar

[37] K. Semrád, J. Čerňan and K. Draganová. “Rolling Contact Fatigue Life Evaluation Using Weibull Distribution”. Mechanics, Materials Science & Engineering Journal. vol. 2(3), p. 28-33, 2016. doi: 10.13140/RG.2.1.3338.9849 Search in Google Scholar

[38] Y. Wang, Z. Chen, Y. Zhang, X. Li and Z. Li. “Remaining useful life prediction of rolling bearings based on the three-parameter Weibull distribution proportional hazards model”. Insight: Non-Destructive Testing and Condition Monitoring, vol. 62(12), pp. 710-718, 2021. doi: 10.1784/INSI.2020.62.12.71010.1784/insi.2020.62.12.710 Search in Google Scholar

[39] W.-S. Lei, Z. Yu, P. Zhang and G. Qian. “Standardized Weibull statistics of ceramic strength”. Ceramics International, vol. 47(4), pp. 4972-4993, 2021. doi: 10.1016/j.ceramint.2020.10.07310.1016/j.ceramint.2020.10.073 Search in Google Scholar

[40] K. Semrád, K. Draganová, P. Košcák, and J. Cernan. “Statistical prediction models of impact damage of airport conveyor belts”. Transportation Research Procedia, vol. 51, pp. 11-19, 2020. doi: 10.1016/j.trpro.2020.11.00310.1016/j.trpro.2020.11.003 Search in Google Scholar

[41] B. Belhadj, L. Abdelkader and A. Chateauneuf. “Weibull probabilistic model of moisture concentration build up in a fiber graphite/epoxy polymer composite under varying hydrothermal conditions”. Periodica Polytechnica Mechanical Engineering, vol. 65(1), pp. 27-38, 2021. doi: 10.3311/PPme.1365310.3311/PPme.13653 Search in Google Scholar

[42] S. Guo, X. Wang, Y. Liu, X. Zhu and Y. Zhai, “A comparison study of three types of parameter estimation methods on weibull model”. Advances in Intelligent Systems and Computing, vol. 1244 AISC, pp. 706-711, 2021. doi: 10.1007/978-3-030-53980-1_10310.1007/978-3-030-53980-1_103 Search in Google Scholar

[43] M. Sumair, T. Aized, S.A.R. Gardezi, S.U.U. Rehman and S.M.S. Rehman. “A novel method developed to estimate Weibull parameters”. Energy Reports, vol. 6, pp. 1715-1733, 2020. doi: 10.1016/j.egyr.2020.06.01710.1016/j.egyr.2020.06.017 Search in Google Scholar

[44] H. Saboori, G. Barmalzan and S.M. Ayat. “Generalized Modified Inverse Weibull Distribution: Its Properties and Applications”. Sankhya B, vol. 82(2), pp. 247-269, 2020. doi: 10.1007/s13571-018-0182-110.1007/s13571-018-0182-1 Search in Google Scholar

[45] L. Hongxiang, F.P. Shan and S. Baofeng. “A comparative study of modified Weibull distributions in proportional hazards models”. AIP Conference Proceedings, vol. 2266, 090011, 2020. doi: 10.1063/5.001842810.1063/5.0018428 Search in Google Scholar