Accesso libero

Electrode positioning to investigate the changes of the thoracic bioimpedance caused by aortic dissection – a simulation study

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Khan IA, Nair CK. Clinical, diagnostic and management perspectives of aortic dissection. Elsevier Chest. 2002; 122(1): 311–28. https://doi.org/10.1378/chest.122.1.311 KhanIA NairCK Clinical, diagnostic and management perspectives of aortic dissection Elsevier Chest 2002 122 1 311 28 https://doi.org/10.1378/chest.122.1.311 10.1378/chest.122.1.31112114376 Search in Google Scholar

Heuser J. Distributed under a CC-BY-SA-3.0 license Wikimedia Commons. 2016. HeuserJ Distributed under a CC-BY-SA-3.0 license Wikimedia Commons 2016 Search in Google Scholar

Patchett N. Distributed under a CC BY-SA 4.0 license. Wikimedia Commons. 2015. PatchettN Distributed under a CC BY-SA 4.0 license Wikimedia Commons. 2015 Search in Google Scholar

Altamirano-Diaz L, Welisch E, Dempsey AA, Park TS, Grattan M, Norozi K. Non-invasive measurement of cardiac output in children with repaired coarctation of the aorta using electrical cardiometry compared to transthoracic Doppler echocardiography. Physiol Meas. 2018; 17;39(5): 055003. https://doi.org/10.1088/1361-6579/aac02b Altamirano-DiazL WelischE DempseyAA ParkTS GrattanM NoroziK Non-invasive measurement of cardiac output in children with repaired coarctation of the aorta using electrical cardiometry compared to transthoracic Doppler echocardiography Physiol Meas 2018 17; 39 5 055003 https://doi.org/10.1088/1361-6579/aac02b 10.1088/1361-6579/aac02b29695645 Search in Google Scholar

Reinbacher-Köstinger A, Badeli V, Biro O, Magele C. Numerical simulation of conductivity changes in the human thorax caused by aortic dissection. IEEE Trans. Magnetic. 2019;55(6): 5100304. https://doi.org/10.1109/tmag.2019.2895418 Reinbacher-KöstingerA BadeliV BiroO MageleC Numerical simulation of conductivity changes in the human thorax caused by aortic dissection IEEE Trans. Magnetic. 2019 55 6 5100304 https://doi.org/10.1109/tmag.2019.2895418 10.1109/TMAG.2019.2895418 Search in Google Scholar

Badeli V, Reinbacher-Köstinger A, Biro O, Magele C. Numerical simulation of impedance cardiogram changes in case of chronic aortic dissection. Springer, Singapore. 2020; In: Bertemes-Filho P. (eds) 17th International Conference on Electrical Bioimpedance. ICEBI 2019. IFMBE Proceedings, vol 72. https://doi.org/10.1007/978-981-13-3498-6_9 BadeliV Reinbacher-KöstingerA BiroO MageleC Numerical simulation of impedance cardiogram changes in case of chronic aortic dissection Springer Singapore 2020 In: Bertemes-FilhoP. (eds) 17th International Conference on Electrical Bioimpedance ICEBI 2019. IFMBE Proceedings, vol 72. https://doi.org/10.1007/978-981-13-3498-6_9 10.1007/978-981-13-3498-6_9 Search in Google Scholar

Reinbacher-Köstinger A, Badeli V, Melito GM, Magele C, Biro O. Numerical simulation of various electrode configurations in impedance cardiography to identify aortic dissection. Springer, Singapore. 2020; In: Bertemes-Filho P. (eds) 17th International Conference on Electrical Bioimpedance. ICEBI 2019. IFMBE Proceedings, vol 72. https://doi.org/10.1007/978-981-13-3498-6_7 Reinbacher-KöstingerA BadeliV MelitoGM MageleC BiroO Numerical simulation of various electrode configurations in impedance cardiography to identify aortic dissection Springer Singapore 2020 In: Bertemes-FilhoP. (eds) 17th International Conference on Electrical Bioimpedance ICEBI 2019. IFMBE Proceedings, vol 72. https://doi.org/10.1007/978-981-13-3498-6_7 10.1007/978-981-13-3498-6_7 Search in Google Scholar

Bernstein DP. Impedance cardiography: Pulsatile blood flow and the biophysical and electrodynamic basis for the stroke volume equations. J Electr Bioimp. 2010; 1: 2–17. https://doi.org/10.5617/jeb.51 BernsteinDP Impedance cardiography: Pulsatile blood flow and the biophysical and electrodynamic basis for the stroke volume equations J Electr Bioimp 2010 1 2 17 https://doi.org/10.5617/jeb.51 10.5617/jeb.51 Search in Google Scholar

Ulbrich M, Muhlsteff J, Leonhardt S, Walter M. Influence of physiological sources on the impedance cardiogram analyzed using 4D FEM simulations. Physiol. Meas. 2014; 35: 1451–1468. https://doi.org/10.1088/0967-3334/35/7/1451 UlbrichM MuhlsteffJ LeonhardtS WalterM Influence of physiological sources on the impedance cardiogram analyzed using 4D FEM simulations Physiol. Meas 2014 35 1451 1468 https://doi.org/10.1088/0967-3334/35/7/1451 10.1088/0967-3334/35/7/145124901446 Search in Google Scholar

de Sitter A, Verdaasdonk RM, Faes TJC. Do mathematical model studies settle the controversy on the origin of cardiac synchronous transthoracic electrical impedance variations? A systematic review. Physiol. Meas. 2016; 37: R88–R108. https://doi.org/10.1088/0967-3334/37/9/r88 de SitterA VerdaasdonkRM FaesTJC Do mathematical model studies settle the controversy on the origin of cardiac synchronous transthoracic electrical impedance variations? A systematic review Physiol. Meas. 2016 37 R88 R108 https://doi.org/10.1088/0967-3334/37/9/r88 10.1088/0967-3334/37/9/R8827531544 Search in Google Scholar

Alastruey J, Xiao N, Fok H, Schaeffter T, Figueroa CA. On the impact of modelling assumptions in multi-scale, subject-specific models of aortic haemodynamics. J. Roy. Soc. Interface. 2016; 13(119): 20160073. https://doi.org/10.1098/rsif.2016.0073 AlastrueyJ XiaoN FokH SchaeffterT FigueroaCA On the impact of modelling assumptions in multi-scale, subject-specific models of aortic haemodynamics J. Roy. Soc. Interface 2016 13 119 20160073. https://doi.org/10.1098/rsif.2016.0073 10.1098/rsif.2016.0073493807927307511 Search in Google Scholar

Visser KR. Electric properties of flowing blood and impedance cardiography. Ann. Biomed. Eng. 1989; 17: 463–473. https://doi.org/10.1007/bf02368066 VisserKR Electric properties of flowing blood and impedance cardiography Ann. Biomed. Eng 1989 17 463 473 https://doi.org/10.1007/bf02368066 10.1007/BF023680662610418 Search in Google Scholar

Hoetink AE, Faes TJ, Visser KR, Heethaar RM. On the flow dependency of the electrical conductivity of blood. IEEE Trans. Biomed. Eng. 2004; 51(7): 1251–1261. https://doi.org/10.1109/tbme.2004.827263 HoetinkAE FaesTJ VisserKR HeethaarRM On the flow dependency of the electrical conductivity of blood IEEE Trans. Biomed. Eng 2004 51 7 1251 1261 https://doi.org/10.1109/tbme.2004.827263 10.1109/TBME.2004.82726315248541 Search in Google Scholar

Fuji M, Nakajima K, Sakamoto K, Kanai H. Orientation and deformation of erythrocytes in flowing blood. Annals of the New York Academy of Sciences. 1999; 873(1): 245–61. https://doi.org/10.1111/j.1749-6632.1999.tb09473.x FujiM NakajimaK SakamotoK KanaiH Orientation and deformation of erythrocytes in flowing blood Annals of the New York Academy of Sciences 1999 873 1 245 61 https://doi.org/10.1111/j.1749-6632.1999.tb09473.x 10.1111/j.1749-6632.1999.tb09473.x10372174 Search in Google Scholar

Gaw RL, Cornish BH, Thomas BJ. The electrical impedance of pulsatile blood flowing through rigid tubes: an experimental investigation. 13th International Conference on Electrical Bioimpedance and the 8th Conference on Electrical Impedance Tomography. 2007; pp. 73–76. https://doi.org/10.1007/978-3-540-73841-1_22 GawRL CornishBH ThomasBJ The electrical impedance of pulsatile blood flowing through rigid tubes: an experimental investigation 13th International Conference on Electrical Bioimpedance and the 8th Conference on Electrical Impedance Tomography 2007 73 76 https://doi.org/10.1007/978-3-540-73841-1_22 10.1007/978-3-540-73841-1_22 Search in Google Scholar

Gaw RL, Cornish BH, Thomas BJ. The electrical impedance of pulsatile blood flowing through rigid tubes: A theoretical investigation. IEEE Transaction on Biomedical Engineering. 2008; 55(2): 721–727. https://doi.org/10.1109/tbme.2007.903531 GawRL CornishBH ThomasBJ The electrical impedance of pulsatile blood flowing through rigid tubes: A theoretical investigation IEEE Transaction on Biomedical Engineering 2008 55 2 721 727 https://doi.org/10.1109/tbme.2007.903531 10.1109/TBME.2007.90353118270009 Search in Google Scholar

COMSOL Multiphysics. v. 5.3. COMSOL AB, Stockholm, Sweden. COMSOL Multiphysics v. 5.3. COMSOL AB, Stockholm, Sweden. Search in Google Scholar

Mansouri S, Alhadidi T, Chabchoub S, Salah RB. Impedance cardiography: Recent applications and developments. Biomedical Research. 2018; 29 (19): 3542–3552. https://doi.org/10.4066/biomedicalresearch.29-17-3479 MansouriS AlhadidiT ChabchoubS SalahRB Impedance cardiography: Recent applications and developments Biomedical Research 2018 29 19 3542 3552 https://doi.org/10.4066/biomedicalresearch.29-17-3479 10.4066/biomedicalresearch.29-17-3479 Search in Google Scholar

Gabriel S. The dielectric properties of biological tissues. Physics in Medicine and Biology. 1996; 41: 2231–2249. GabrielS The dielectric properties of biological tissues Physics in Medicine and Biology 1996 41 2231 2249 10.1088/0031-9155/41/11/0018938024 Search in Google Scholar

Chen D, Müller-Eschner M, von Tengg-Kobligk H, Barber D, Böckler D, Hose R, Ventikos Y. A patient-specific study of Type-B aortic dissection: evaluation of true-false lumen blood exchange. BioMedical Engineering OnLine. 2012; 12: 65. https://doi.org/10.1186/1475-925x-12-65 ChenD Müller-EschnerM von Tengg-KobligkH BarberD BöcklerD HoseR VentikosY A patient-specific study of Type-B aortic dissection: evaluation of true-false lumen blood exchange BioMedical Engineering OnLine 2012 12 65 https://doi.org/10.1186/1475-925x-12-65 10.1186/1475-925X-12-65373400723829346 Search in Google Scholar

Cheng Z, Tan FP, Riga CV, Bicknell CD, Hamady MS, Gibbs RG, Wood NB, Xu XY. Analysis of flow patterns in a patient-specific aortic dissection model. Journal of Biomechanical Engineering. 2010; 132(5), 051007. https://doi.org/10.1115/1.4000964 ChengZ TanFP RigaCV BicknellCD HamadyMS GibbsRG WoodNB XuXY Analysis of flow patterns in a patient-specific aortic dissection model Journal of Biomechanical Engineering 2010 132 5 051007. https://doi.org/10.1115/1.4000964 10.1115/1.400096420459208 Search in Google Scholar

Sobol’ IM. Sensitivity estimates for nonlinear mathematical models. Math Modeling Comput Exp. 1993; 1: 407–14. Sobol’IM Sensitivity estimates for nonlinear mathematical models Math Modeling Comput Exp 1993 1 407 14 Search in Google Scholar

Saltelli A. et al. Global sensitivity analysis: the primer. John Wiley & Sons. 2008. SaltelliA. Global sensitivity analysis: the primer John Wiley & Sons 2008 10.1002/9780470725184 Search in Google Scholar

Sudret B. Global sensitivity analysis using polynomial chaos expansions. Reliability Engineering & System Safety. 2008; 93(7): 964–979. https://doi.org/10.1016/j.ress.2007.04.002 SudretB Global sensitivity analysis using polynomial chaos expansions Reliability Engineering & System Safety 2008 93 7 964 979 https://doi.org/10.1016/j.ress.2007.04.002 10.1016/j.ress.2007.04.002 Search in Google Scholar

Crestaux T, Maître OL, Martinez J-M. Polynomial chaos expansion for sensitivity analysis. Reliability Engineering & System Safety. 2009; 94.7: 1161–1172. https://doi.org/10.1016/j.ress.2008.10.008 CrestauxT MaîtreOL MartinezJ-M Polynomial chaos expansion for sensitivity analysis Reliability Engineering & System Safety 2009 94 7 1161 1172 https://doi.org/10.1016/j.ress.2008.10.008 10.1016/j.ress.2008.10.008 Search in Google Scholar

Xiu D, Karniadakis GE. The Wiener – Askey polynomial chaos for stochastic differential equations. SIAM Journal on Scientific Computing. 2002; 24.2: 619–644. https://doi.org/10.1137/s1064827501387826 XiuD KarniadakisGE The Wiener – Askey polynomial chaos for stochastic differential equations SIAM Journal on Scientific Computing 2002 24 2 619 644 https://doi.org/10.1137/s1064827501387826 10.21236/ADA460654 Search in Google Scholar

Alexanderian A, Gremaud PA, Smith RC. Variance-based sensitivity analysis for time-dependent processes. Reliability Engineering & System Safety. 2019; 106722. https://doi.org/10.1016/j.ress.2019.106722 AlexanderianA GremaudPA SmithRC Variance-based sensitivity analysis for time-dependent processes Reliability Engineering & System Safety 2019 106722 https://doi.org/10.1016/j.ress.2019.106722 10.1016/j.ress.2019.106722 Search in Google Scholar

Marelli S, Lamas C, Sudret B. UQLab user manual - Sensitivity analysis. Report UQLab-V1.3–106, Chair of Risk, Safety & Uncertainty Quantification, ETH Zurich. 2019. https://doi.org/10.1061/9780784413609.257 MarelliS LamasC SudretB UQLab user manual - Sensitivity analysis Report UQLab-V1.3–106, Chair of Risk, Safety & Uncertainty Quantification, ETH Zurich 2019 https://doi.org/10.1061/9780784413609.257 10.1061/9780784413609.257 Search in Google Scholar

Marelli S, Sudret B. UQLab user manual - Polynomial Chaos Expansions. Report UQLab-V1.3–104, Chair of Risk, Safety & Uncertainty Quantification, ETH Zurich. 2019. https://doi.org/10.1061/9780784413609.257 MarelliS SudretB UQLab user manual - Polynomial Chaos Expansions Report UQLab-V1.3–104, Chair of Risk, Safety & Uncertainty Quantification, ETH Zurich 2019 https://doi.org/10.1061/9780784413609.257 10.1061/9780784413609.257 Search in Google Scholar

Wolak A, et al. Aortic size assessment by noncontrast cardiac computed tomography: normal limits by age, gender, and body surface area. JACC: Cardiovascular Imaging. 2008; 1(2): 200–209. https://doi.org/10.1016/j.jcmg.2007.11.005 WolakA Aortic size assessment by noncontrast cardiac computed tomography: normal limits by age, gender, and body surface area JACC: Cardiovascular Imaging 2008 1 2 200 209 https://doi.org/10.1016/j.jcmg.2007.11.005 10.1016/j.jcmg.2007.11.00519356429 Search in Google Scholar

Bernstein DP, Lemmens HJM. Stroke volume equation for impedance cardiography. Medical & Biological Engineering & Computing. 2005; 43(4): 443–450. BernsteinDP LemmensHJM Stroke volume equation for impedance cardiography Medical & Biological Engineering & Computing 2005 43 4 443 450 10.1007/BF0234472416255425 Search in Google Scholar