Accesso libero

Electrical performance estimation and comparative study of heterojunction strained and conventional gate all around nanosheet field effect transistors

INFORMAZIONI SU QUESTO ARTICOLO

Cita

M. Han, Ch. Chang, H. Chen, Y. Cheng, and Y. Wu, “Device and Circuit Performance Estimation of Junctionless Bulk FinFETs,” IEEE Transaction on Electron Devices, vol. 60, no. 6, pp.1807-1813, 2013. doi: 10.1109/TED.2013.2256137 Search in Google Scholar

A. S. Rawat, and S. K. Gupta, “Potential modeling and performance analysis of junction-less quadruple gate MOSFETs for analog and RF applications,” Microelectronics Journal, vol.66, pp.89-10, 2017. doi:10.1016/j.mejo.2017.06.004 Search in Google Scholar

S. Milshtein and C. Liessner, “High speed switch using pairs of pHEMTs with shifted gates,” Microelectronics Journal, vol. 36, pp. 316–318, 2005. doi:10.1016/j.mejo.2005.02.052. Search in Google Scholar

A. Veloso, G. Eneman, A. Keersgieter, D. Jang, H. Mertens, P. Matagne, E. Dentoni, J. Ryckaert, and N. Horiguchi, “Nanosheet FETs and their Potential for Enabling Continued Moore’s Law Scaling,”2021 Electron Devices Technology and Manufacturing Conference (EDTM), 2021. doi: 10.1109/EDTM50988.2021.9420942. Search in Google Scholar

E. Mohapatra, T. P. Dash, J. Jena, S. Das, and C. K. Maiti. “Strain induced Variability Study in Gate All Around Vertically Stacked Horizontal Nanosheet Transistors,”. Physica Scripta, vol.95, no. 6, pp. 065808, 2020. doi: 10.1088/1402-4896/ab89f5 Search in Google Scholar

H. Park, W. Choi, M. Pourghaderi, J. Kim, U. Kwon, and D. Kim “NEGF simulations of stacked silicon nanosheet FETs for performance optimization,” 2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 2019. doi: 10.1109/SISPAD.2019.8870365 Search in Google Scholar

S.-T. Chang, “Nanoscale Strained Si/SiGe Hetero-junction Trigate Field Effect Transistors,” Jpn. J. Appl. Phys., vol. 44, no. 7A, pp. 5304-5308, 2005. doi: 10.1143/JJAP.44.5304 Search in Google Scholar

S. Reboh, R. Coquand, N. Loubet, N. Bernier, E. Augendre, R. Chao, J. Li, J. Zhang, R. Muthinti, V. Boureau, T. Yamashita, and O. Faynot, “Imaging, Modeling and Engineering of Strain in Gate All Around Nanosheet Transistors,” 2019 IEEE Inter-national Electron Devices Meeting (IEDM), 2019. doi:10.1109/IEDM19573.2019.8993524 Search in Google Scholar

K. H. Hong, J. Kim, S. H. Lee, and J. K. Shin, “Strain-Driven Electronic Band Structure Modulation of Si Nanowires,” Nano Letters, vol. 8, no. 5, pp. 1335-1340, 2008. doi:10.1021/nl0734140 Search in Google Scholar

N. A. Kumari, and P. Prithvi, “Performance Evaluation of GAA Nanosheet with Varied Geometrical and Process Parameters,” Silicon, vol. 14, pp. 9821-9831, 2022. doi:10.1007/s12633-022-01695-7 Search in Google Scholar

C. Usha, and P. Vimala, “Analytical Drain Current Modeling and Simulation of Triple Material Gate All Around Heterojunction TFETs Considering Depletion Regions,” Semiconductors, vol. 54, no. 12, pp. 1634-1640, 2020. doi: 10.1134/S1063782620120398 Search in Google Scholar

S. Mukesh, and J. Zhang, “A Review of the Gate All Around Nanosheet FET Process Opportunities,” Electronics, vol. 11, no. 21, pp. 3589 (1-11), 2022. doi: 10.3390/electronics11213589 Search in Google Scholar

Q. Zhang and et al., “Optimization of Structure and Electrical Characteristics for Four-Layer Vertically-Stacked Horizontal Gate All Around Si Nanosheets Devices,” Nanomaterials, vol. 11, no. 6, pp. 664, 2021. doi:10.3390/nano11030646 Search in Google Scholar

Y. Sun, X. Li, Z. Liu, Y. Liu, X. Li, and Y. Shi, “Vertically stacked nanosheets tree-type reconfigurable transistor with improved ON-current,” IEEE Transactions on Electron Devices, vol. 69, no. 1, pp. 370-374, 2022. doi: 10.1109/TED.2021.3126266 Search in Google Scholar

O. Talati, and R. Hosseini, “Device and circuit performance simulation of a new nano scale side contacted field effect diode structure,” Journal of Optoelectronical Nanostructures, vol. 4, no. 3, pp. 17-32, 2019. doi: 20.1001.1.24237361.2019.4.3.2.4 Search in Google Scholar

M. Ancona, “Density-gradient theory: a macroscopic approach to quantum confinement and tunneling in semiconductor devices,” Journal of Computational Electronics, vol. 10, no. 1, pp. 65-97, 2011. doi: 10.1007/s10825-011-0356-9 Search in Google Scholar

P. Andrei, “Calibration of the Density-Gradient model by using the multidimensional effective-mass Schrödinger equation,” Journal of Computational Electronics, vol. 5, pp. 315-318, 2006. doi: 10.1007/s10825-006-0013-x Search in Google Scholar

A. Wettstein, Schenk, and W. Fichtner, “Quantum Device Simulation with the Density Gradient Model on Unstructured Grids,” IEEE Transaction on Electron Devices, vol. 48, pp. 279-283, 2001. doi: 10.1109/16.902727 Search in Google Scholar

Atlas User Manual, Device Simulation Software; 2011 Search in Google Scholar

A. Richter, S. Glunz, F. Werner, J. Schmidt, and A. Cuevas, “Improved quantitative description of Auger Recombination in crystalline silicon,” Physical Review B, vol. 86, no. 16, p. 165202, 2012. doi: 10.1103/PhysRevB.86.165202 Search in Google Scholar

M. Bavir, A. Abbasi, and A. Orouji, “Dual P+-Wire Double-Gate Junctionless MOSFET with 10‑nm regime for Low Power Applications,” Journal of Electronic Materials, vol.51, pp. 2083-2094, 2022. doi: 10.1007/s11664-022-09462-5 Search in Google Scholar

eISSN:
1339-309X
Lingua:
Inglese
Frequenza di pubblicazione:
6 volte all'anno
Argomenti della rivista:
Engineering, Introductions and Overviews, other