Accesso libero

Impact of Simulated Microgravity Environment on Bioprinted Tissue Constructs

, , , , , , , ,  e   
09 set 2025
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Afzal S, Abdul Manap AS, Attiq A, Albokhadaim I, Kandeel M, Alhojaily SM (2023) From imbalance to impairment: the central role of reactive oxygen species in oxidative stress-induced disorders and therapeutic exploration. Frontiers in Pharmacology 14: 1269581. https://doi.org/10.3389/fphar.2023.1269581 AfzalS Abdul ManapAS AttiqA AlbokhadaimI KandeelM AlhojailySM 2023 From imbalance to impairment: the central role of reactive oxygen species in oxidative stress-induced disorders and therapeutic exploration Frontiers in Pharmacology 14 1269581 https://doi.org/10.3389/fphar.2023.1269581 Search in Google Scholar

Atrooz F, Alkadhi KA, Salim S (2021) Understanding stress: insights from rodent models. Current Research in Neurobiology 2: 100013. https://doi.org/10.1016/j.crneur.2021.100013 AtroozF AlkadhiKA SalimS 2021 Understanding stress: insights from rodent models Current Research in Neurobiology 2 100013 https://doi.org/10.1016/j.crneur.2021.100013 Search in Google Scholar

Beckett LJ, Williams PM, Toh LS, Hessel V, Gerstweiler L, Fisk I, Toronjo-Urquiza L, Chauhan VM (2024) Advancing insights into microgravity induced muscle changes using Caenorhabditis elegans as a model organism. Npj Microgravity 10(1): 79. https://doi.org/10.1038/s41526-024-00418-z BeckettLJ WilliamsPM TohLS HesselV GerstweilerL FiskI Toronjo-UrquizaL ChauhanVM 2024 Advancing insights into microgravity induced muscle changes using Caenorhabditis elegans as a model organism Npj Microgravity 10 1 79 https://doi.org/10.1038/s41526-024-00418-z Search in Google Scholar

Berardini M, Gesualdi L, Morabito C, Ferranti F, Reale A, Zampieri M, Karpach K, Tinari A, Bertuccini L, Guarnieri S, Catizone A, Mariggiò MA, Ricci G (2023) Simulated microgravity exposure induces antioxidant barrier deregulation and mitochondria enlargement in TCam-2 cell spheroids. Cells 12(16): 2106. https://doi.org/10.3390/cells12162106 BerardiniM GesualdiL MorabitoC FerrantiF RealeA ZampieriM KarpachK TinariA BertucciniL GuarnieriS CatizoneA MariggiòMA RicciG 2023 Simulated microgravity exposure induces antioxidant barrier deregulation and mitochondria enlargement in TCam-2 cell spheroids Cells 12 16 2106 https://doi.org/10.3390/cells12162106 Search in Google Scholar

Bizzarri M, Monici M, Loon JJWAV (2015) How microgravity affects the biology of living systems. BioMed Research International 2015: 1–4. https://doi.org/10.1155/2015/863075 BizzarriM MoniciM LoonJJWAV 2015 How microgravity affects the biology of living systems BioMed Research International 2015 1 4 https://doi.org/10.1155/2015/863075 Search in Google Scholar

Cialdai F, Risaliti C, Monici M (2022) Role of fibroblasts in wound healing and tissue remodeling on Earth and in space. Frontiers in Bioengineering and Biotechnology 10: 958381. https://doi.org/10.3389/fbioe.2022.958381 CialdaiF RisalitiC MoniciM 2022 Role of fibroblasts in wound healing and tissue remodeling on Earth and in space Frontiers in Bioengineering and Biotechnology 10 958381 https://doi.org/10.3389/fbioe.2022.958381 Search in Google Scholar

Cortés-Sánchez JL, Melnik D, Sandt V, Kahlert S, Marchal S, Johnson IRD, Calvaruso M, Liemersdorf C, Wuest SL, Grimm D, Krüger M (2023) Fluid and bubble flow detach adherent cancer cells to form spheroids on a random positioning machine. Cells 12(22): 2665. https://doi.org/10.3390/cells12222665 Cortés-SánchezJL MelnikD SandtV KahlertS MarchalS JohnsonIRD CalvarusoM LiemersdorfC WuestSL GrimmD KrügerM 2023 Fluid and bubble flow detach adherent cancer cells to form spheroids on a random positioning machine Cells 12 22 2665 https://doi.org/10.3390/cells12222665 Search in Google Scholar

Corydon TJ, Schulz H, Richter P, Strauch SM, Böhmer M, Ricciardi DA, Wehland M, Krüger M, Erzinger GS, Lebert M, Infanger M, Wise PM, Grimm D (2023) Current knowledge about the impact of microgravity on gene regulation. Cells 12(7): 1043. https://doi.org/10.3390/cells12071043 CorydonTJ SchulzH RichterP StrauchSM BöhmerM RicciardiDA WehlandM KrügerM ErzingerGS LebertM InfangerM WisePM GrimmD 2023 Current knowledge about the impact of microgravity on gene regulation Cells 12 7 1043 https://doi.org/10.3390/cells12071043 Search in Google Scholar

Cukierman E, Pankov R, Stevens DR, Yamada KM (2001) Taking cell-matrix adhesions to the third dimension. Science 294(5547): 1708–1712. https://doi.org/10.1126/science.1064829 CukiermanE PankovR StevensDR YamadaKM 2001 Taking cell-matrix adhesions to the third dimension Science 294 5547 1708 1712 https://doi.org/10.1126/science.1064829 Search in Google Scholar

Ferranti F, Del Bianco M, Pacelli C (2020) Advantages and limitations of current microgravity platforms for space biology research. Applied Sciences 11(1): 68. https://doi.org/10.3390/app11010068 FerrantiF Del BiancoM PacelliC 2020 Advantages and limitations of current microgravity platforms for space biology research Applied Sciences 11 1 68 https://doi.org/10.3390/app11010068 Search in Google Scholar

Graf J, Schulz H, Wehland M, Corydon TJ, Sahana J, Abdelfattah F, Wuest SL, Egli M, Krüger M, Kraus A, Wise PM, Infanger M, Grimm D (2024) Omics studies of tumor cells under microgravity conditions. International Journal of Molecular Sciences 25(2): 926. https://doi.org/10.3390/ijms25020926 GrafJ SchulzH WehlandM CorydonTJ SahanaJ AbdelfattahF WuestSL EgliM KrügerM KrausA WisePM InfangerM GrimmD 2024 Omics studies of tumor cells under microgravity conditions International Journal of Molecular Sciences 25 2 926 https://doi.org/10.3390/ijms25020926 Search in Google Scholar

Groll J, Boland T, Blunk T, Burdick JA, Cho D-W, Dalton PD, Derby B, Forgacs G, Li Q, Mironov VA, Moroni L, Nakamura M, Shu W, Takeuchi S, Vozzi G, Woodfield TBF, Xu T, Yoo JJ, Malda J (2016) Biofabrication: reappraising the definition of an evolving field. Biofabrication 8(1): 013001. https://doi.org/10.1088/1758-5090/8/1/013001 GrollJ BolandT BlunkT BurdickJA ChoD-W DaltonPD DerbyB ForgacsG LiQ MironovVA MoroniL NakamuraM ShuW TakeuchiS VozziG WoodfieldTBF XuT YooJJ MaldaJ 2016 Biofabrication: reappraising the definition of an evolving field Biofabrication 8 1 013001 https://doi.org/10.1088/1758-5090/8/1/013001 Search in Google Scholar

Guarnieri S, Morabito C, Bevere M, Lanuti P, Mariggiò MA (2021) A protective strategy to counteract the oxidative stress induced by simulated microgravity on H9c2 cardiomyocytes. Oxidative Medicine and Cellular Longevity 2021(1). https://doi.org/10.1155/2021/9951113 GuarnieriS MorabitoC BevereM LanutiP MariggiòMA 2021 A protective strategy to counteract the oxidative stress induced by simulated microgravity on H9c2 cardiomyocytes Oxidative Medicine and Cellular Longevity 2021 1 https://doi.org/10.1155/2021/9951113 Search in Google Scholar

Hinderer S, Layland SL, Schenke-Layland K (2016) ECM and ECM-like materials—biomaterials for applications in regenerative medicine and cancer therapy. Advanced Drug Delivery Reviews 97: 260–269. https://doi.org/10.1016/j.addr.2015.11.019 HindererS LaylandSL Schenke-LaylandK 2016 ECM and ECM-like materials—biomaterials for applications in regenerative medicine and cancer therapy Advanced Drug Delivery Reviews 97 260 269 https://doi.org/10.1016/j.addr.2015.11.019 Search in Google Scholar

Huang B, Li D-G, Huang Y, Liu C-T (2018) Effects of spaceflight and simulated microgravity on microbial growth and secondary metabolism. Military Medical Research 5(1): 18. https://doi.org/10.1186/s40779-018-0162-9 HuangB LiD-G HuangY LiuC-T 2018 Effects of spaceflight and simulated microgravity on microbial growth and secondary metabolism Military Medical Research 5 1 18 https://doi.org/10.1186/s40779-018-0162-9 Search in Google Scholar

Hunt M, Torres M, Bachar-Wikstrom E, Wikstrom JD (2024) Cellular and molecular roles of reactive oxygen species in wound healing. Communications Biology 7(1): 1534. https://doi.org/10.1038/s42003-024-07219-w HuntM TorresM Bachar-WikstromE WikstromJD 2024 Cellular and molecular roles of reactive oxygen species in wound healing Communications Biology 7 1 1534 https://doi.org/10.1038/s42003-024-07219-w Search in Google Scholar

Kim YJ, Jeong AJ, Kim M, Lee C, Ye S-K, Kim S (2017) Time-averaged simulated microgravity (taSMG) inhibits proliferation of lymphoma cells, L-540 and HDLM-2, using a 3D clinostat. BioMedical Engineering OnLine 16(1): 48. https://doi.org/10.1186/s12938-017-0337-8 KimYJ JeongAJ KimM LeeC YeS-K KimS 2017 Time-averaged simulated microgravity (taSMG) inhibits proliferation of lymphoma cells, L-540 and HDLM-2, using a 3D clinostat BioMedical Engineering OnLine 16 1 48 https://doi.org/10.1186/s12938-017-0337-8 Search in Google Scholar

Kouznetsov NV (2022) Cell responses to simulated microgravity and hydrodynamic stress can be distinguished by comparative transcriptomics. International Journal of Translational Medicine 2(3): 364–386. https://doi.org/10.3390/ijtm2030029 KouznetsovNV 2022 Cell responses to simulated microgravity and hydrodynamic stress can be distinguished by comparative transcriptomics International Journal of Translational Medicine 2 3 364 386 https://doi.org/10.3390/ijtm2030029 Search in Google Scholar

Lei S-Y, Qu Y, Yang Y-Q, Liu J-C, Zhang Y-F, Zhou S-Y, He Q-Y, Jin H, Yang Y, Guo Z-N (2024) Cellular senescence: a novel therapeutic target for central nervous system diseases. Biomedicine & Pharmacotherapy 179: 117311. https://doi.org/10.1016/j.biopha.2024.117311 LeiS-Y QuY YangY-Q LiuJ-C ZhangY-F ZhouS-Y HeQ-Y JinH YangY GuoZ-N 2024 Cellular senescence: a novel therapeutic target for central nervous system diseases Biomedicine & Pharmacotherapy 179 117311 https://doi.org/10.1016/j.biopha.2024.117311 Search in Google Scholar

Miglietta S, Cristiano L, Espinola MSB, Masiello MG, Micara G, Battaglione E, Linari A, Palmerini MG, Familiari G, Aragona C, Bizzarri M, Macchiarelli G, Nottola, SA (2023) Effects of simulated microgravity in vitro on human metaphase II oocytes: an electron microscopy-based study. Cells 12(10): 1346. https://doi.org/10.3390/cells12101346 MigliettaS CristianoL EspinolaMSB MasielloMG MicaraG BattaglioneE LinariA PalmeriniMG FamiliariG AragonaC BizzarriM MacchiarelliG NottolaSA 2023 Effects of simulated microgravity in vitro on human metaphase II oocytes: an electron microscopy-based study Cells 12 10 1346 https://doi.org/10.3390/cells12101346 Search in Google Scholar

Milojević M, Maver U, Vihar B (2023) Recent advances in 3D printing in the design and application of biopolymer-based scaffolds. In Functional Biomaterials: Design and Development, T. Mohan and K.S. Kleinschek (eds), pp. 489–559. Weinheim, Germany: Wiley. https://doi.org/10.1002/9783527827657.ch17 MilojevićM MaverU ViharB 2023 Recent advances in 3D printing in the design and application of biopolymer-based scaffolds In Functional Biomaterials: Design and Development MohanT. KleinschekK.S. (eds), 489 559 Weinheim, Germany Wiley https://doi.org/10.1002/9783527827657.ch17 Search in Google Scholar

Morabito C, Guarnieri S, Cucina A, Bizzarri M, Mariggiò MA (2020) Antioxidant strategy to prevent simulated microgravity-induced effects on bone osteoblasts. International Journal of Molecular Sciences 21(10): 3638. https://doi.org/10.3390/ijms21103638 MorabitoC GuarnieriS CucinaA BizzarriM MariggiòMA 2020 Antioxidant strategy to prevent simulated microgravity-induced effects on bone osteoblasts International Journal of Molecular Sciences 21 10 3638 https://doi.org/10.3390/ijms21103638 Search in Google Scholar

Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nature Biotechnology 32(8): 773–785. https://doi.org/10.1038/nbt.2958 MurphySV AtalaA 2014 3D bioprinting of tissues and organs Nature Biotechnology 32 8 773 785 https://doi.org/10.1038/nbt.2958 Search in Google Scholar

Neje P, Taksande B, Umekar M, Mangrulkar S (2024) Influence of microgravity on cerebrovascular complications: exploring molecular manifestation and promising countermeasures. Microgravity Science and Technology 36(4): 46. https://doi.org/10.1007/s12217-024-10131-x NejeP TaksandeB UmekarM MangrulkarS 2024 Influence of microgravity on cerebrovascular complications: exploring molecular manifestation and promising countermeasures Microgravity Science and Technology 36 4 46 https://doi.org/10.1007/s12217-024-10131-x Search in Google Scholar

Nguyen HP, Tran PH, Kim K-S, Yang S-G (2021) The effects of real and simulated microgravity on cellular mitochondrial function. Npj Microgravity 7(1): 44. https://doi.org/10.1038/s41526-021-00171-7 NguyenHP TranPH KimK-S YangS-G 2021 The effects of real and simulated microgravity on cellular mitochondrial function Npj Microgravity 7 1 44 https://doi.org/10.1038/s41526-021-00171-7 Search in Google Scholar

Pampaloni F, Reynaud EG, Stelzer EHK (2007) The third dimension bridges the gap between cell culture and live tissue. Nature Reviews Molecular Cell Biology 8(10): 839–845. https://doi.org/10.1038/nrm2236 PampaloniF ReynaudEG StelzerEHK 2007 The third dimension bridges the gap between cell culture and live tissue Nature Reviews Molecular Cell Biology 8 10 839 845 https://doi.org/10.1038/nrm2236 Search in Google Scholar

Ran F, An L, Fan Y, Hang H, Wang S (2016) Simulated microgravity potentiates generation of reactive oxygen species in cells. Biophysics Reports 2(5–6): 100–105. https://doi.org/10.1007/s41048-016-0029-0 RanF AnL FanY HangH WangS 2016 Simulated microgravity potentiates generation of reactive oxygen species in cells Biophysics Reports 2 5–6 100 105 https://doi.org/10.1007/s41048-016-0029-0 Search in Google Scholar

Rudolf AM, Hood WR (2024) Mitochondrial stress in the spaceflight environment. Mitochondrion 76: 101855. https://doi.org/10.1016/j.mito.2024.101855 RudolfAM HoodWR 2024 Mitochondrial stress in the spaceflight environment Mitochondrion 76 101855 https://doi.org/10.1016/j.mito.2024.101855 Search in Google Scholar

Sharma SN, Meller LLT, Sharma AN, Amsterdam EA (2023) Cardiovascular adaptations of space travel: a systematic review. Cardiology 148(5), 434–440. https://doi.org/10.1159/000531466 SharmaSN MellerLLT SharmaAN AmsterdamEA 2023 Cardiovascular adaptations of space travel: a systematic review Cardiology 148 5 434 440 https://doi.org/10.1159/000531466 Search in Google Scholar

Snezhkina AV, Kudryavtseva AV, Kardymon OL, Savvateeva MV, Melnikova NV, Krasnov GS, Dmitriev AA (2019) ROS generation and antioxidant defense systems in normal and malignant cells. Oxidative Medicine and Cellular Longevity 2019: 1–17. https://doi.org/10.1155/2019/6175804 SnezhkinaAV KudryavtsevaAV KardymonOL SavvateevaMV MelnikovaNV KrasnovGS DmitrievAA 2019 ROS generation and antioxidant defense systems in normal and malignant cells Oxidative Medicine and Cellular Longevity 2019 1 17 https://doi.org/10.1155/2019/6175804 Search in Google Scholar

Thippabhotla S, Zhong C, He M (2019) 3D cell culture stimulates the secretion of in vivo like extracellular vesicles. Scientific Reports 9(1): 13012. https://doi.org/10.1038/s41598-019-49671-3 ThippabhotlaS ZhongC HeM 2019 3D cell culture stimulates the secretion of in vivo like extracellular vesicles Scientific Reports 9 1 13012 https://doi.org/10.1038/s41598-019-49671-3 Search in Google Scholar

Tripathi S, Dash M, Chakraborty R, Lukman HJ, Kumar P, Hassan S, Mehboob H, Singh H, Nanda HS (2025) Engineering considerations in the design of tissue specific bioink for 3D bioprinting applications. Biomaterials Science 13(1): 93–129. https://doi.org/10.1039/D4BM01192A TripathiS DashM ChakrabortyR LukmanHJ KumarP HassanS MehboobH SinghH NandaHS 2025 Engineering considerations in the design of tissue specific bioink for 3D bioprinting applications Biomaterials Science 13 1 93 129 https://doi.org/10.1039/D4BM01192A Search in Google Scholar

Tripathi S, Mandal SS, Bauri S, Maiti P (2023) 3D bioprinting and its innovative approach for biomedical applications. MedComm 4(1): e194. https://doi.org/10.1002/mco2.194 TripathiS MandalSS BauriS MaitiP 2023 3D bioprinting and its innovative approach for biomedical applications MedComm 4 1 e194 https://doi.org/10.1002/mco2.194 Search in Google Scholar

Varesi A, Chirumbolo S, Campagnoli LIM, Pierella E, Piccini GB, Carrara A, Ricevuti G, Scassellati C, Bonvicini C, Pascale A (2022) The role of antioxidants in the interplay between oxidative stress and senescence. Antioxidants 11(7): 1224. https://doi.org/10.3390/antiox11071224 VaresiA ChirumboloS CampagnoliLIM PierellaE PicciniGB CarraraA RicevutiG ScassellatiC BonviciniC PascaleA 2022 The role of antioxidants in the interplay between oxidative stress and senescence Antioxidants 11 7 1224 https://doi.org/10.3390/antiox11071224 Search in Google Scholar

Wang N, Zuo Z, Meng T, Liu Y, Zheng X, Ma Y (2024) Salidroside alleviates simulated microgravity-induced bone loss by activating the Nrf2/HO-1 pathway. Journal of Orthopaedic Surgery and Research 19(1): 531. https://doi.org/10.1186/s13018-024-05030-1 WangN ZuoZ MengT LiuY ZhengX MaY 2024 Salidroside alleviates simulated microgravity-induced bone loss by activating the Nrf2/HO-1 pathway Journal of Orthopaedic Surgery and Research 19 1 531 https://doi.org/10.1186/s13018-024-05030-1 Search in Google Scholar

Wuest SL, Richard S, Kopp S, Grimm D, Egli M (2015) Simulated microgravity: critical review on the use of random positioning machines for mammalian cell culture. BioMed Research International 2015: 1–8. https://doi.org/10.1155/2015/971474 WuestSL RichardS KoppS GrimmD EgliM 2015 Simulated microgravity: critical review on the use of random positioning machines for mammalian cell culture BioMed Research International 2015 1 8 https://doi.org/10.1155/2015/971474 Search in Google Scholar

Xie Z, Gao M, Lobo AO, Webster TJ. (2020) 3D bioprinting in tissue engineering for medical applications: the classic and the hybrid. Polymers 12(8): 1717. https://doi.org/10.3390/polym12081717 XieZ GaoM LoboAO WebsterTJ 2020 3D bioprinting in tissue engineering for medical applications: the classic and the hybrid Polymers 12 8 1717 https://doi.org/10.3390/polym12081717 Search in Google Scholar

Zhang X, Zhu H, Zhang J (2025) Oxidative stress on the ground and in the microgravity environment: pathophysiological effects and treatment. Antioxidants 14(2): 231. https://doi.org/10.3390/antiox14020231 ZhangX ZhuH ZhangJ 2025 Oxidative stress on the ground and in the microgravity environment: pathophysiological effects and treatment Antioxidants 14 2 231 https://doi.org/10.3390/antiox14020231 Search in Google Scholar

Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Scienze biologiche, Scienze della vita, altro, Scienze materiali, Scienze materiali, altro, Fisica, Fisica, altro