This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Afzal S, Abdul Manap AS, Attiq A, Albokhadaim I, Kandeel M, Alhojaily SM (2023) From imbalance to impairment: the central role of reactive oxygen species in oxidative stress-induced disorders and therapeutic exploration. Frontiers in Pharmacology14: 1269581. https://doi.org/10.3389/fphar.2023.1269581AfzalSAbdul ManapASAttiqAAlbokhadaimIKandeelMAlhojailySM2023From imbalance to impairment: the central role of reactive oxygen species in oxidative stress-induced disorders and therapeutic explorationFrontiers in Pharmacology141269581https://doi.org/10.3389/fphar.2023.1269581Search in Google Scholar
Atrooz F, Alkadhi KA, Salim S (2021) Understanding stress: insights from rodent models. Current Research in Neurobiology2: 100013. https://doi.org/10.1016/j.crneur.2021.100013AtroozFAlkadhiKASalimS2021Understanding stress: insights from rodent modelsCurrent Research in Neurobiology2100013https://doi.org/10.1016/j.crneur.2021.100013Search in Google Scholar
Beckett LJ, Williams PM, Toh LS, Hessel V, Gerstweiler L, Fisk I, Toronjo-Urquiza L, Chauhan VM (2024) Advancing insights into microgravity induced muscle changes using Caenorhabditis elegans as a model organism. Npj Microgravity10(1): 79. https://doi.org/10.1038/s41526-024-00418-zBeckettLJWilliamsPMTohLSHesselVGerstweilerLFiskIToronjo-UrquizaLChauhanVM2024Advancing insights into microgravity induced muscle changes using Caenorhabditis elegans as a model organismNpj Microgravity10179https://doi.org/10.1038/s41526-024-00418-zSearch in Google Scholar
Berardini M, Gesualdi L, Morabito C, Ferranti F, Reale A, Zampieri M, Karpach K, Tinari A, Bertuccini L, Guarnieri S, Catizone A, Mariggiò MA, Ricci G (2023) Simulated microgravity exposure induces antioxidant barrier deregulation and mitochondria enlargement in TCam-2 cell spheroids. Cells12(16): 2106. https://doi.org/10.3390/cells12162106BerardiniMGesualdiLMorabitoCFerrantiFRealeAZampieriMKarpachKTinariABertucciniLGuarnieriSCatizoneAMariggiòMARicciG2023Simulated microgravity exposure induces antioxidant barrier deregulation and mitochondria enlargement in TCam-2 cell spheroidsCells12162106https://doi.org/10.3390/cells12162106Search in Google Scholar
Bizzarri M, Monici M, Loon JJWAV (2015) How microgravity affects the biology of living systems. BioMed Research International2015: 1–4. https://doi.org/10.1155/2015/863075BizzarriMMoniciMLoonJJWAV2015How microgravity affects the biology of living systemsBioMed Research International201514https://doi.org/10.1155/2015/863075Search in Google Scholar
Cialdai F, Risaliti C, Monici M (2022) Role of fibroblasts in wound healing and tissue remodeling on Earth and in space. Frontiers in Bioengineering and Biotechnology10: 958381. https://doi.org/10.3389/fbioe.2022.958381CialdaiFRisalitiCMoniciM2022Role of fibroblasts in wound healing and tissue remodeling on Earth and in spaceFrontiers in Bioengineering and Biotechnology10958381https://doi.org/10.3389/fbioe.2022.958381Search in Google Scholar
Cortés-Sánchez JL, Melnik D, Sandt V, Kahlert S, Marchal S, Johnson IRD, Calvaruso M, Liemersdorf C, Wuest SL, Grimm D, Krüger M (2023) Fluid and bubble flow detach adherent cancer cells to form spheroids on a random positioning machine. Cells12(22): 2665. https://doi.org/10.3390/cells12222665Cortés-SánchezJLMelnikDSandtVKahlertSMarchalSJohnsonIRDCalvarusoMLiemersdorfCWuestSLGrimmDKrügerM2023Fluid and bubble flow detach adherent cancer cells to form spheroids on a random positioning machineCells12222665https://doi.org/10.3390/cells12222665Search in Google Scholar
Corydon TJ, Schulz H, Richter P, Strauch SM, Böhmer M, Ricciardi DA, Wehland M, Krüger M, Erzinger GS, Lebert M, Infanger M, Wise PM, Grimm D (2023) Current knowledge about the impact of microgravity on gene regulation. Cells12(7): 1043. https://doi.org/10.3390/cells12071043CorydonTJSchulzHRichterPStrauchSMBöhmerMRicciardiDAWehlandMKrügerMErzingerGSLebertMInfangerMWisePMGrimmD2023Current knowledge about the impact of microgravity on gene regulationCells1271043https://doi.org/10.3390/cells12071043Search in Google Scholar
Cukierman E, Pankov R, Stevens DR, Yamada KM (2001) Taking cell-matrix adhesions to the third dimension. Science294(5547): 1708–1712. https://doi.org/10.1126/science.1064829CukiermanEPankovRStevensDRYamadaKM2001Taking cell-matrix adhesions to the third dimensionScience294554717081712https://doi.org/10.1126/science.1064829Search in Google Scholar
Ferranti F, Del Bianco M, Pacelli C (2020) Advantages and limitations of current microgravity platforms for space biology research. Applied Sciences11(1): 68. https://doi.org/10.3390/app11010068FerrantiFDel BiancoMPacelliC2020Advantages and limitations of current microgravity platforms for space biology researchApplied Sciences11168https://doi.org/10.3390/app11010068Search in Google Scholar
Graf J, Schulz H, Wehland M, Corydon TJ, Sahana J, Abdelfattah F, Wuest SL, Egli M, Krüger M, Kraus A, Wise PM, Infanger M, Grimm D (2024) Omics studies of tumor cells under microgravity conditions. International Journal of Molecular Sciences25(2): 926. https://doi.org/10.3390/ijms25020926GrafJSchulzHWehlandMCorydonTJSahanaJAbdelfattahFWuestSLEgliMKrügerMKrausAWisePMInfangerMGrimmD2024Omics studies of tumor cells under microgravity conditionsInternational Journal of Molecular Sciences252926https://doi.org/10.3390/ijms25020926Search in Google Scholar
Groll J, Boland T, Blunk T, Burdick JA, Cho D-W, Dalton PD, Derby B, Forgacs G, Li Q, Mironov VA, Moroni L, Nakamura M, Shu W, Takeuchi S, Vozzi G, Woodfield TBF, Xu T, Yoo JJ, Malda J (2016) Biofabrication: reappraising the definition of an evolving field. Biofabrication8(1): 013001. https://doi.org/10.1088/1758-5090/8/1/013001GrollJBolandTBlunkTBurdickJAChoD-WDaltonPDDerbyBForgacsGLiQMironovVAMoroniLNakamuraMShuWTakeuchiSVozziGWoodfieldTBFXuTYooJJMaldaJ2016Biofabrication: reappraising the definition of an evolving fieldBiofabrication81013001https://doi.org/10.1088/1758-5090/8/1/013001Search in Google Scholar
Guarnieri S, Morabito C, Bevere M, Lanuti P, Mariggiò MA (2021) A protective strategy to counteract the oxidative stress induced by simulated microgravity on H9c2 cardiomyocytes. Oxidative Medicine and Cellular Longevity2021(1). https://doi.org/10.1155/2021/9951113GuarnieriSMorabitoCBevereMLanutiPMariggiòMA2021A protective strategy to counteract the oxidative stress induced by simulated microgravity on H9c2 cardiomyocytesOxidative Medicine and Cellular Longevity20211https://doi.org/10.1155/2021/9951113Search in Google Scholar
Hinderer S, Layland SL, Schenke-Layland K (2016) ECM and ECM-like materials—biomaterials for applications in regenerative medicine and cancer therapy. Advanced Drug Delivery Reviews97: 260–269. https://doi.org/10.1016/j.addr.2015.11.019HindererSLaylandSLSchenke-LaylandK2016ECM and ECM-like materials—biomaterials for applications in regenerative medicine and cancer therapyAdvanced Drug Delivery Reviews97260269https://doi.org/10.1016/j.addr.2015.11.019Search in Google Scholar
Huang B, Li D-G, Huang Y, Liu C-T (2018) Effects of spaceflight and simulated microgravity on microbial growth and secondary metabolism. Military Medical Research5(1): 18. https://doi.org/10.1186/s40779-018-0162-9HuangBLiD-GHuangYLiuC-T2018Effects of spaceflight and simulated microgravity on microbial growth and secondary metabolismMilitary Medical Research5118https://doi.org/10.1186/s40779-018-0162-9Search in Google Scholar
Hunt M, Torres M, Bachar-Wikstrom E, Wikstrom JD (2024) Cellular and molecular roles of reactive oxygen species in wound healing. Communications Biology7(1): 1534. https://doi.org/10.1038/s42003-024-07219-wHuntMTorresMBachar-WikstromEWikstromJD2024Cellular and molecular roles of reactive oxygen species in wound healingCommunications Biology711534https://doi.org/10.1038/s42003-024-07219-wSearch in Google Scholar
Kim YJ, Jeong AJ, Kim M, Lee C, Ye S-K, Kim S (2017) Time-averaged simulated microgravity (taSMG) inhibits proliferation of lymphoma cells, L-540 and HDLM-2, using a 3D clinostat. BioMedical Engineering OnLine16(1): 48. https://doi.org/10.1186/s12938-017-0337-8KimYJJeongAJKimMLeeCYeS-KKimS2017Time-averaged simulated microgravity (taSMG) inhibits proliferation of lymphoma cells, L-540 and HDLM-2, using a 3D clinostatBioMedical Engineering OnLine16148https://doi.org/10.1186/s12938-017-0337-8Search in Google Scholar
Kouznetsov NV (2022) Cell responses to simulated microgravity and hydrodynamic stress can be distinguished by comparative transcriptomics. International Journal of Translational Medicine2(3): 364–386. https://doi.org/10.3390/ijtm2030029KouznetsovNV2022Cell responses to simulated microgravity and hydrodynamic stress can be distinguished by comparative transcriptomicsInternational Journal of Translational Medicine23364386https://doi.org/10.3390/ijtm2030029Search in Google Scholar
Lei S-Y, Qu Y, Yang Y-Q, Liu J-C, Zhang Y-F, Zhou S-Y, He Q-Y, Jin H, Yang Y, Guo Z-N (2024) Cellular senescence: a novel therapeutic target for central nervous system diseases. Biomedicine & Pharmacotherapy179: 117311. https://doi.org/10.1016/j.biopha.2024.117311LeiS-YQuYYangY-QLiuJ-CZhangY-FZhouS-YHeQ-YJinHYangYGuoZ-N2024Cellular senescence: a novel therapeutic target for central nervous system diseasesBiomedicine & Pharmacotherapy179117311https://doi.org/10.1016/j.biopha.2024.117311Search in Google Scholar
Miglietta S, Cristiano L, Espinola MSB, Masiello MG, Micara G, Battaglione E, Linari A, Palmerini MG, Familiari G, Aragona C, Bizzarri M, Macchiarelli G, Nottola, SA (2023) Effects of simulated microgravity in vitro on human metaphase II oocytes: an electron microscopy-based study. Cells12(10): 1346. https://doi.org/10.3390/cells12101346MigliettaSCristianoLEspinolaMSBMasielloMGMicaraGBattaglioneELinariAPalmeriniMGFamiliariGAragonaCBizzarriMMacchiarelliGNottolaSA2023Effects of simulated microgravity in vitro on human metaphase II oocytes: an electron microscopy-based studyCells12101346https://doi.org/10.3390/cells12101346Search in Google Scholar
Milojević M, Maver U, Vihar B (2023) Recent advances in 3D printing in the design and application of biopolymer-based scaffolds. In Functional Biomaterials: Design and Development, T. Mohan and K.S. Kleinschek (eds), pp. 489–559. Weinheim, Germany: Wiley. https://doi.org/10.1002/9783527827657.ch17MilojevićMMaverUViharB2023Recent advances in 3D printing in the design and application of biopolymer-based scaffoldsInFunctional Biomaterials: Design and DevelopmentMohanT.KleinschekK.S.(eds),489559Weinheim, GermanyWileyhttps://doi.org/10.1002/9783527827657.ch17Search in Google Scholar
Morabito C, Guarnieri S, Cucina A, Bizzarri M, Mariggiò MA (2020) Antioxidant strategy to prevent simulated microgravity-induced effects on bone osteoblasts. International Journal of Molecular Sciences21(10): 3638. https://doi.org/10.3390/ijms21103638MorabitoCGuarnieriSCucinaABizzarriMMariggiòMA2020Antioxidant strategy to prevent simulated microgravity-induced effects on bone osteoblastsInternational Journal of Molecular Sciences21103638https://doi.org/10.3390/ijms21103638Search in Google Scholar
Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nature Biotechnology32(8): 773–785. https://doi.org/10.1038/nbt.2958MurphySVAtalaA20143D bioprinting of tissues and organsNature Biotechnology328773785https://doi.org/10.1038/nbt.2958Search in Google Scholar
Neje P, Taksande B, Umekar M, Mangrulkar S (2024) Influence of microgravity on cerebrovascular complications: exploring molecular manifestation and promising countermeasures. Microgravity Science and Technology36(4): 46. https://doi.org/10.1007/s12217-024-10131-xNejePTaksandeBUmekarMMangrulkarS2024Influence of microgravity on cerebrovascular complications: exploring molecular manifestation and promising countermeasuresMicrogravity Science and Technology36446https://doi.org/10.1007/s12217-024-10131-xSearch in Google Scholar
Nguyen HP, Tran PH, Kim K-S, Yang S-G (2021) The effects of real and simulated microgravity on cellular mitochondrial function. Npj Microgravity7(1): 44. https://doi.org/10.1038/s41526-021-00171-7NguyenHPTranPHKimK-SYangS-G2021The effects of real and simulated microgravity on cellular mitochondrial functionNpj Microgravity7144https://doi.org/10.1038/s41526-021-00171-7Search in Google Scholar
Pampaloni F, Reynaud EG, Stelzer EHK (2007) The third dimension bridges the gap between cell culture and live tissue. Nature Reviews Molecular Cell Biology8(10): 839–845. https://doi.org/10.1038/nrm2236PampaloniFReynaudEGStelzerEHK2007The third dimension bridges the gap between cell culture and live tissueNature Reviews Molecular Cell Biology810839845https://doi.org/10.1038/nrm2236Search in Google Scholar
Ran F, An L, Fan Y, Hang H, Wang S (2016) Simulated microgravity potentiates generation of reactive oxygen species in cells. Biophysics Reports2(5–6): 100–105. https://doi.org/10.1007/s41048-016-0029-0RanFAnLFanYHangHWangS2016Simulated microgravity potentiates generation of reactive oxygen species in cellsBiophysics Reports25–6100105https://doi.org/10.1007/s41048-016-0029-0Search in Google Scholar
Rudolf AM, Hood WR (2024) Mitochondrial stress in the spaceflight environment. Mitochondrion76: 101855. https://doi.org/10.1016/j.mito.2024.101855RudolfAMHoodWR2024Mitochondrial stress in the spaceflight environmentMitochondrion76101855https://doi.org/10.1016/j.mito.2024.101855Search in Google Scholar
Sharma SN, Meller LLT, Sharma AN, Amsterdam EA (2023) Cardiovascular adaptations of space travel: a systematic review. Cardiology148(5), 434–440. https://doi.org/10.1159/000531466SharmaSNMellerLLTSharmaANAmsterdamEA2023Cardiovascular adaptations of space travel: a systematic reviewCardiology1485434440https://doi.org/10.1159/000531466Search in Google Scholar
Snezhkina AV, Kudryavtseva AV, Kardymon OL, Savvateeva MV, Melnikova NV, Krasnov GS, Dmitriev AA (2019) ROS generation and antioxidant defense systems in normal and malignant cells. Oxidative Medicine and Cellular Longevity2019: 1–17. https://doi.org/10.1155/2019/6175804SnezhkinaAVKudryavtsevaAVKardymonOLSavvateevaMVMelnikovaNVKrasnovGSDmitrievAA2019ROS generation and antioxidant defense systems in normal and malignant cellsOxidative Medicine and Cellular Longevity2019117https://doi.org/10.1155/2019/6175804Search in Google Scholar
Thippabhotla S, Zhong C, He M (2019) 3D cell culture stimulates the secretion of in vivo like extracellular vesicles. Scientific Reports9(1): 13012. https://doi.org/10.1038/s41598-019-49671-3ThippabhotlaSZhongCHeM20193D cell culture stimulates the secretion of in vivo like extracellular vesiclesScientific Reports9113012https://doi.org/10.1038/s41598-019-49671-3Search in Google Scholar
Tripathi S, Dash M, Chakraborty R, Lukman HJ, Kumar P, Hassan S, Mehboob H, Singh H, Nanda HS (2025) Engineering considerations in the design of tissue specific bioink for 3D bioprinting applications. Biomaterials Science13(1): 93–129. https://doi.org/10.1039/D4BM01192ATripathiSDashMChakrabortyRLukmanHJKumarPHassanSMehboobHSinghHNandaHS2025Engineering considerations in the design of tissue specific bioink for 3D bioprinting applicationsBiomaterials Science13193129https://doi.org/10.1039/D4BM01192ASearch in Google Scholar
Tripathi S, Mandal SS, Bauri S, Maiti P (2023) 3D bioprinting and its innovative approach for biomedical applications. MedComm4(1): e194. https://doi.org/10.1002/mco2.194TripathiSMandalSSBauriSMaitiP20233D bioprinting and its innovative approach for biomedical applicationsMedComm41e194https://doi.org/10.1002/mco2.194Search in Google Scholar
Varesi A, Chirumbolo S, Campagnoli LIM, Pierella E, Piccini GB, Carrara A, Ricevuti G, Scassellati C, Bonvicini C, Pascale A (2022) The role of antioxidants in the interplay between oxidative stress and senescence. Antioxidants11(7): 1224. https://doi.org/10.3390/antiox11071224VaresiAChirumboloSCampagnoliLIMPierellaEPicciniGBCarraraARicevutiGScassellatiCBonviciniCPascaleA2022The role of antioxidants in the interplay between oxidative stress and senescenceAntioxidants1171224https://doi.org/10.3390/antiox11071224Search in Google Scholar
Wang N, Zuo Z, Meng T, Liu Y, Zheng X, Ma Y (2024) Salidroside alleviates simulated microgravity-induced bone loss by activating the Nrf2/HO-1 pathway. Journal of Orthopaedic Surgery and Research19(1): 531. https://doi.org/10.1186/s13018-024-05030-1WangNZuoZMengTLiuYZhengXMaY2024Salidroside alleviates simulated microgravity-induced bone loss by activating the Nrf2/HO-1 pathwayJournal of Orthopaedic Surgery and Research191531https://doi.org/10.1186/s13018-024-05030-1Search in Google Scholar
Wuest SL, Richard S, Kopp S, Grimm D, Egli M (2015) Simulated microgravity: critical review on the use of random positioning machines for mammalian cell culture. BioMed Research International2015: 1–8. https://doi.org/10.1155/2015/971474WuestSLRichardSKoppSGrimmDEgliM2015Simulated microgravity: critical review on the use of random positioning machines for mammalian cell cultureBioMed Research International201518https://doi.org/10.1155/2015/971474Search in Google Scholar
Xie Z, Gao M, Lobo AO, Webster TJ. (2020) 3D bioprinting in tissue engineering for medical applications: the classic and the hybrid. Polymers12(8): 1717. https://doi.org/10.3390/polym12081717XieZGaoMLoboAOWebsterTJ20203D bioprinting in tissue engineering for medical applications: the classic and the hybridPolymers1281717https://doi.org/10.3390/polym12081717Search in Google Scholar
Zhang X, Zhu H, Zhang J (2025) Oxidative stress on the ground and in the microgravity environment: pathophysiological effects and treatment. Antioxidants14(2): 231. https://doi.org/10.3390/antiox14020231ZhangXZhuHZhangJ2025Oxidative stress on the ground and in the microgravity environment: pathophysiological effects and treatmentAntioxidants142231https://doi.org/10.3390/antiox14020231Search in Google Scholar