INFORMAZIONI SU QUESTO ARTICOLO

Cita

Špelić I, Rogale D, Mihelić–Bogdanić A (2019) The laboratory investigation of the clothing microclimatic layers in accordance with the volume quantification and qualification. J Text Inst 110(1):26-36. https://doi.org/10.1080/00405000.2018.1462087 Špelić I Rogale D Mihelić–Bogdanić A ( 2019) The laboratory investigation of the clothing microclimatic layers in accordance with the volume quantification and qualification . J Text Inst 110 ( 1 ): 26 - 36 . https://doi.org/10.1080/00405000.2018.1462087Search in Google Scholar

Lu Y, Song G, Li J, Wang F (2015) The impact of air gap on thermal performance of protective clothing against hot water spray. Text Res J 85(7):709-721. https://doi.org/10.1177/0040517514553875 Lu Y Song G Li J Wang F ( 2015) The impact of air gap on thermal performance of protective clothing against hot water spray . Text Res J 85 ( 7 ): 709 - 721 . https://doi.org/10.1177/0040517514553875Search in Google Scholar

Frackiewicz-Kaczmarek J, Psikuta A, Bueno MA, Rossi RM (2015a) Effect of garment properties on air gap thickness and the contact area distribution. Text Res J 85(18):1907–1918. https://doi.org/10.1177/0040517514559582 Frackiewicz-Kaczmarek J Psikuta A Bueno MA Rossi RM ( 2015a) Effect of garment properties on air gap thickness and the contact area distribution . Text Res J 85 ( 18 ): 1907 1918 . https://doi.org/10.1177/0040517514559582Search in Google Scholar

Lee Y, Hong K, Hong SA (2007) 3D quantification of microclimate volume in layered clothing for the prediction of clothing insulation. Appl Ergon 38(3):349-355. https://doi.org/10.1016/j.apergo.2006.04.017 Lee Y Hong K Hong SA ( 2007) 3D quantification of microclimate volume in layered clothing for the prediction of clothing insulation . Appl Ergon 38 ( 3 ): 349 - 355 . https://doi.org/10.1016/j.apergo.2006.04.017Search in Google Scholar

Mert E, Psikuta A, Arévalo M, Charbonnier C, Luible-Bär C, Bueno MA, Rossi RM (2018) A validation methodology and application of 3D garment simulation software to determine the distribution of air layers in garments during walking. Measurement 117:153-164. https://doi.org/10.1016/j.measurement.2017.11.042 Mert E Psikuta A Arévalo M Charbonnier C Luible-Bär C Bueno MA Rossi RM ( 2018) A validation methodology and application of 3D garment simulation software to determine the distribution of air layers in garments during walking . Measurement 117 : 153 - 164 . https://doi.org/10.1016/j.measurement.2017.11.042Search in Google Scholar

Mert E, Böhnisch S, Psikuta A, Bueno MA, Rossi RM (2015) Determination of the air gap thickness underneath the garment for lower body using 3D body scanning. In 6th International Conference on 3D Body Scanning Technologies, Lugano, Switzerland. https://www.3dbody.tech/cap/papers/2015/15114_20mert.pdf Mert E Böhnisch S Psikuta A Bueno MA Rossi RM ( 2015) Determination of the air gap thickness underneath the garment for lower body using 3D body scanning . In 6th International Conference on 3D Body Scanning Technologies, Lugano, Switzerland. https://www.3dbody.tech/cap/papers/2015/15114_20mert.pdfSearch in Google Scholar

Song G (2007) Clothing air gap layers and thermal protective performance in single layer garment. J Ind Text 36(3):193-205. Song G ( 2007) Clothing air gap layers and thermal protective performance in single layer garment . J Ind Text 36 ( 3 ): 193 - 205 .Search in Google Scholar

Chianta MA, Munroe LR (1964) Flame-contact studies. Journal of Heat Transfer 86(3):449-456. Chianta MA Munroe LR ( 1964) Flame-contact studies . Journal of Heat Transfer 86 ( 3 ): 449 - 456 .Search in Google Scholar

Deng M, Wang Y, Li P (2018) Effect of air gaps characteristics on thermal protective performance of firefighters’ clothing: A review. Int J Cloth Sci 30(2):246-267. Deng M Wang Y Li P ( 2018) Effect of air gaps characteristics on thermal protective performance of firefighters’ clothing: A review . Int J Cloth Sci 30 ( 2 ): 246 - 267 .Search in Google Scholar

Benisek L, Phillips WA (1981) Protective clothing fabrics: Part II. Against convective heat (open-flame) hazards. Text Res J 51(3):191-196. Benisek L Phillips WA ( 1981) Protective clothing fabrics: Part II. Against convective heat (open-flame) hazards . Text Res J 51 ( 3 ): 191 - 196 .Search in Google Scholar

Torvi DA, Douglas DJ, Faulkner B (1999). Influence of air gaps on bench-top test results of flame resistant fabrics. J Fire Prot Eng 10(1):1-12. https://doi.org/10.1177/104239159901000101 Torvi DA Douglas DJ Faulkner B ( 1999). Influence of air gaps on bench-top test results of flame resistant fabrics . J Fire Prot Eng 10 ( 1 ): 1 - 12 . https://doi.org/10.1177/104239159901000101Search in Google Scholar

Sawcyn CMJ (2003) Heat Transfer Model of Horizontal Air Gaps in Bench Top Testing of Thermal Protective Fabrics. Master’s thesis, Saskatoon: University of Saskatchewan Sawcyn CMJ ( 2003) Heat Transfer Model of Horizontal Air Gaps in Bench Top Testing of Thermal Protective Fabrics . Master’s thesis, Saskatoon: University of SaskatchewanSearch in Google Scholar

Talukdar P, Torvi DA, Simonson CJ, Sawcyn CM (2010) Coupled CFD and radiation simulation of air gaps in bench top protective fabric tests. Int J Heat Mass Transf 53(1/3):526-539. https://doi.org/10.1016/j.ijheatmasstransfer.2009.04.041 Talukdar P Torvi DA Simonson CJ Sawcyn CM ( 2010) Coupled CFD and radiation simulation of air gaps in bench top protective fabric tests . Int J Heat Mass Transf 53 ( 1/3 ): 526 - 539 . https://doi.org/10.1016/j.ijheatmasstransfer.2009.04.041Search in Google Scholar

Sawcyn CMJ, Torvi DA (2009) Improving heat transfer models of air gaps in bench top tests of thermal protective fabrics. Text Res J 79(7):632-644. Sawcyn CMJ Torvi DA ( 2009) Improving heat transfer models of air gaps in bench top tests of thermal protective fabrics . Text Res J 79 ( 7 ): 632 - 644 .Search in Google Scholar

Song G, Chitrphiromsri P, Ding D (2008) Numerical simulations of heat and moisture transport in thermal protective clothing under flash fire conditions. Int J Occup Saf Ergon 14(1):89-106. https://doi.org/10.1080/10803548.2008.11076752 Song G Chitrphiromsri P Ding D ( 2008) Numerical simulations of heat and moisture transport in thermal protective clothing under flash fire conditions . Int J Occup Saf Ergon 14 ( 1 ): 89 - 106 . https://doi.org/10.1080/10803548.2008.11076752Search in Google Scholar

Torvi DA, Threlfall TG (2006) Heat transfer model of flame resistant fabrics during cooling after exposure to fire. Fire Technology 42(1):27-48. https://doi.org/10.1007/s10694-005-3733-8 Torvi DA Threlfall TG ( 2006) Heat transfer model of flame resistant fabrics during cooling after exposure to fire . Fire Technology 42 ( 1 ): 27 - 48 . https://doi.org/10.1007/s10694-005-3733-8Search in Google Scholar

Mah T, Song G (2010) Investigation of the Contribution of Garment Design to Thermal Protection. Part 1: Characterizing Air Gaps using Three-dimensional Body Scanning for Women’s Protective Clothing. Text Res J 80(13):1317-1329. https://doi.org/10.1177/0040517509358795 Mah T Song G ( 2010) Investigation of the Contribution of Garment Design to Thermal Protection. Part 1: Characterizing Air Gaps using Three-dimensional Body Scanning for Women’s Protective Clothing . Text Res J 80 ( 13 ): 1317 - 1329 . https://doi.org/10.1177/0040517509358795Search in Google Scholar

Lu Y, Song G, Li J (2013) A Novel Approach for Fit Analysis of Protective Clothing Using Three-Dimensional Body Scanning. Proceeding of the 4th International Conference on 3D Body Scanning Technologies. Long Beach CA, USA. https://www.3dbody.tech/cap/papers/2013/13327_13lu.pdf Lu Y Song G Li J ( 2013) A Novel Approach for Fit Analysis of Protective Clothing Using Three-Dimensional Body Scanning . Proceeding of the 4th International Conference on 3D Body Scanning Technologies. Long Beach CA, USA. https://www.3dbody.tech/cap/papers/2013/13327_13lu.pdfSearch in Google Scholar

Daanen H, Hatcher K, Havenith (2005) Determination of clothing microclimate volume. Elsevier Ergonomics Book Series. 3:361-365. https://doi.org/10.1016/S1572-347X(05)80057-6 Daanen H Hatcher K Havenith ( 2005) Determination of clothing microclimate volume . Elsevier Ergonomics Book Series. 3 : 361 - 365 . https://doi.org/10.1016/S1572-347X(05)80057-6Search in Google Scholar

Daanen H, Psikuta A (2018) 3D body scanning ch.10. In: Nayak R, Rajiv P (ed) Automation in Garment Manufacturing, The Textile Institute Book Series, Woodhead Publishing, pp 237-252. https://doi.org/10.1016/B978-0-08-101211-6.00010-0 Daanen H Psikuta A ( 2018) 3D body scanning ch. 10. In: Nayak R Rajiv P (ed) Automation in Garment Manufacturing, The Textile Institute Book Series, Woodhead Publishing, pp 237 - 252 . https://doi.org/10.1016/B978-0-08-101211-6.00010-0Search in Google Scholar

EN ISO 13688:2013 Protective clothing – General requirements EN ISO 13688:2013 Protective clothing – General requirementsSearch in Google Scholar

EN ISO 11611:2015 Protective clothing for use in welding and allied processes Protective clothing for use in welding and allied processes EN ISO 11611:2015 Protective clothing for use in welding and allied processes Protective clothing for use in welding and allied processesSearch in Google Scholar

EN ISO 11612:2015 Protective clothing — Clothing to protect against heat and flame — Minimum performance requirements EN ISO 11612:2015 Protective clothing — Clothing to protect against heat and flame — Minimum performance requirementsSearch in Google Scholar

EN 1149-5:2018 Protective clothing – Electrostatic properties – Part 5: Material performance and design requirements EN 1149-5:2018 Protective clothing – Electrostatic properties – Part 5: Material performance and design requirementsSearch in Google Scholar

EN 13034:2005+A1:2009 Protective clothing against liquid chemicals. Performance requirements for chemical protective clothing offering limited protective performance against liquid chemicals (Type 6 and Type PB [6. equipment) EN 13034:2005+A1:2009 Protective clothing against liquid chemicals. Performance requirements for chemical protective clothing offering limited protective performance against liquid chemicals (Type 6 and Type PB [6. equipment)Search in Google Scholar

EN ISO 14116:2015 Protective clothing — Protection against flame — Limited flame spread materials, material assemblies and clothing EN ISO 14116:2015 Protective clothing — Protection against flame — Limited flame spread materials, material assemblies and clothingSearch in Google Scholar

IEC 61482-2:2018 Live working - Protective clothing against the thermal hazards of an electric arc - Part 2: Requirements IEC 61482-2:2018 Live working - Protective clothing against the thermal hazards of an electric arc - Part 2: RequirementsSearch in Google Scholar

Młynarczyk M, Havenith G, Léonard J, Martins R, Hodder S (2018) Inter-laboratory proficiency tests in measuring thermal insulation and evaporative resistance of clothing using the Newton-type thermal manikin. Text Res J 88(4):453-466. https://doi.org/10.1177/0040517516681957 Młynarczyk M Havenith G Léonard J Martins R Hodder S ( 2018) Inter-laboratory proficiency tests in measuring thermal insulation and evaporative resistance of clothing using the Newton-type thermal manikin . Text Res J 88 ( 4 ): 453 - 466 . https://doi.org/10.1177/0040517516681957Search in Google Scholar

Młynarczyk M (2020) Characteristics of Specialised Firefighter Clothing Used in Poland – the Thermal Parameters. Fibres Text East Eur 28, 1(139):65-70. doi: 10.5604/01.3001.0013.5860 Młynarczyk M ( 2020) Characteristics of Specialised Firefighter Clothing Used in Poland – the Thermal Parameters . Fibres Text East Eur 28,1 ( 139 ): 65 - 70 . doi: 10.5604/01.3001.0013.5860Open DOISearch in Google Scholar

Młynarczyk M (2019) Influence of Air Velocity on the Total Thermal Insulation of Different Types of Clothing. Fibres Text East Eur 27, 6(138):75-80. doi: 10.5604/01.3001.0013.447 Młynarczyk M ( 2019) Influence of Air Velocity on the Total Thermal Insulation of Different Types of Clothing . Fibres Text East Eur 27,6 ( 138 ): 75 - 80 . doi: 10.5604/01.3001.0013.447Open DOISearch in Google Scholar

EN ISO 20685-1:2019-01 3-D scanning methodologies for internationally compatible anthropometric databases - Part 1: Evaluation protocol for body dimensions extracted from 3-D body scans EN ISO 20685-1:2019-01 3-D scanning methodologies for internationally compatible anthropometric databases - Part 1: Evaluation protocol for body dimensions extracted from 3-D body scansSearch in Google Scholar

Młynarczyk M, Jankowski J, Orysiak J (2022) Objętość przestrzeni powietrznych a rozmiar odzieży przy wykorzystaniu techniki skanowania 3D – studium przypadku (in Polish), Bezpieczeństwo Pracy. Nauka i Praktyka. 8:17-21. doi: 10.54215/BP.2022.08.21.Mlynarczyk Młynarczyk M Jankowski J Orysiak J ( 2022) Objętość przestrzeni powietrznych a rozmiar odzieży przy wykorzystaniu techniki skanowania 3D – studium przypadku (in Polish), Bezpieczeństwo Pracy . Nauka i Praktyka. 8 : 17 - 21 . doi: 10.54215/BP.2022.08.21.MlynarczykOpen DOISearch in Google Scholar

EN 342:2018-01 Protective clothing. Ensembles and garments for protection against cold EN 342:2018-01 Protective clothing. Ensembles and garments for protection against coldSearch in Google Scholar

EN ISO 15831:2004 Physiological effects — Measurement of thermal insulation by means of a thermal manikin EN ISO 15831:2004 Physiological effects — Measurement of thermal insulation by means of a thermal manikinSearch in Google Scholar

McQuerry M, DenHartog E, Barker R (2018) Analysis of air gap volume in structural firefighter turnout suit constructions in relation to heat loss. Text Res J 88(21):2475-2484. https://doi.org/10.1177/0040517517723024 McQuerry M DenHartog E Barker R ( 2018) Analysis of air gap volume in structural firefighter turnout suit constructions in relation to heat loss . Text Res J 88 ( 21 ): 2475 - 2484 . https://doi.org/10.1177/0040517517723024Search in Google Scholar

Ke Y, Wang F (2020) An Exploration of Relationships among Thermal Insulation, Area Factor and Air Gap of Male Chinese Ethnic Costumes. Polymers 12(6):1302. https://doi.org/10.3390/polym12061302 Ke Y Wang F ( 2020) An Exploration of Relationships among Thermal Insulation, Area Factor and Air Gap of Male Chinese Ethnic Costumes . Polymers 12 ( 6 ): 1302 . https://doi.org/10.3390/polym12061302Search in Google Scholar

Chen Y, Fan J, Qian X, Zhang W (2004) Effect of garment fit on thermal insulation and evaporative resistance. Text Res J 74:742–748. Chen Y Fan J Qian X Zhang W ( 2004) Effect of garment fit on thermal insulation and evaporative resistance . Text Res J 74 : 742 748 .Search in Google Scholar

Li J, Zhang Z, Wang, Y (2013) The relationship between air gap sizes and clothing heat transfer performance. J Text Inst 104:1327–1336. Li J Zhang Z Wang, Y ( 2013) The relationship between air gap sizes and clothing heat transfer performance . J Text Inst 104 : 1327 1336 .Search in Google Scholar

Zhang Z, Li J (2011) Volume of air gaps under clothing and its related thermal effects. J Fiber Bioeng Inform 4(2):137-144. doi:10.3993/jfbi06201104 Zhang Z Li J ( 2011) Volume of air gaps under clothing and its related thermal effects . J Fiber Bioeng Inform 4 ( 2 ): 137 - 144 . doi:10.3993/jfbi06201104Open DOISearch in Google Scholar

Mert E, Böhnisch S, Psikuta A, Bueno MA, Rossi RM (2016) Contribution of garment fit and style to thermal comfort at the lower body. Int J Biometeorol 60(12):1995-2004. https://doi.org/10.1007/s00484-016-1258-0 Mert E Böhnisch S Psikuta A Bueno MA Rossi RM ( 2016) Contribution of garment fit and style to thermal comfort at the lower body . Int J Biometeorol 60 ( 12 ): 1995 - 2004 . https://doi.org/10.1007/s00484-016-1258-0Search in Google Scholar

Lu Y, Song G, Li J (2014) A novel approach for fit analysis of thermal protective clothing using three-dimensional body scanning. Appl Ergon 45:1439–1446. Lu Y Song G Li J ( 2014) A novel approach for fit analysis of thermal protective clothing using three-dimensional body scanning . Appl Ergon 45 : 1439 1446 .Search in Google Scholar

Mert E, Psikuta A, Bueno MA, Rossi RM (2015) Effect of heterogenous and homogenous air gaps on dry heat loss through the garment. Int J Biometeorol 59:1701–1710. https://doi.org/10.1007/s00484-015-0978-x Mert E Psikuta A Bueno MA Rossi RM ( 2015) Effect of heterogenous and homogenous air gaps on dry heat loss through the garment . Int J Biometeorol 59 : 1701 1710 . https://doi.org/10.1007/s00484-015-0978-xSearch in Google Scholar

Frackiewicz-Kaczmarek J, Psikuta A, Bueno MA, Rossi RM (2015b) Air gap thickness and contact area in undershirts with various moisture contents: influence of garment fit, fabric structure and fiber composition Text Res J 85(20):2196-2207. Frackiewicz-Kaczmarek J Psikuta A Bueno MA Rossi RM ( 2015b) Air gap thickness and contact area in undershirts with various moisture contents: influence of garment fit, fabric structure and fiber composition Text Res J 85 ( 20 ): 2196 - 2207 .Search in Google Scholar