INFORMAZIONI SU QUESTO ARTICOLO

Cita

Fig. 1.

The clothing used for the tests: a) underwear (U), b) set 1 (S1) (energy sector), c) set 2 (S2) (chemical industry)
The clothing used for the tests: a) underwear (U), b) set 1 (S1) (energy sector), c) set 2 (S2) (chemical industry)

Fig. 2.

Method of calculating the total air volume schematically presented
Method of calculating the total air volume schematically presented

Fig. 3.

Percentage of the difference between the values of thermal insulation (in static and dynamic conditions) for individual sizes of outerwear (parallel method)
Percentage of the difference between the values of thermal insulation (in static and dynamic conditions) for individual sizes of outerwear (parallel method)

Fig. 4.

Total air volume: from the skin of the manikin to the surface of the outerwear (Vt_U+Si)
Total air volume: from the skin of the manikin to the surface of the outerwear (Vt_U+Si)

Fig. 5.

3D scan images of manikin dressed with underwear and set S2 in different variants: a) size 50), b) size 54, c) size 56
3D scan images of manikin dressed with underwear and set S2 in different variants: a) size 50), b) size 54, c) size 56

Fig. 6.

Relationship between the clothing’s total thermal insulation (static and dynamic) and air volume
Relationship between the clothing’s total thermal insulation (static and dynamic) and air volume

Fig. 7.

Relationship between the clothing’s total thermal insulation (static and dynamic) and the air gap size
Relationship between the clothing’s total thermal insulation (static and dynamic) and the air gap size

The equations for the relationship between the clothing’s total thermal insulation (in static and dynamic test conditions), total air volume (Vt), and air gap size (dsir)

Test conditions Total air volume Vt [dm3] Average air gap dair [mm]
static It = −5*10−5*Vt2 + 0.0047*Vt + 0.104 (2) It = −0.0001*dair2 + 0.0071*dair + 0.104 (3)
dynamic Itr = −4*10−5*Vt2 + 0.0036*Vt + 0.088 (4) Itr = −9*10−5*dair2 + 0.0053*dair + 0.088 (5)

Data obtained from the manufacturer describing the different sizes

Size Height [cm] Circumference
chest [cm] waist [cm] collar [cm]
50 170-176 96-100 88-92 40-41
54 176-182 104-108 96-100 42-43
56 182-188 108-112 100-140 43-44

A detailed description of the tested clothing

Name Material composition Normative requirements Industrial application
Outerwear clothing
Set S1 jacket and waist-length pants 79% cotton, 20% polyester, 1% antistatic fiber; Hydro-Tec finish; 260 g/m2 EN ISO 13688:2013 [21], EN ISO 11611:2015 [22], EN 11612:2015 [23], EN 1149-5:2018 [24], EN 13034:2005 [25], EN ISO 14116:2015 [26], IEC 61482-2:2018 [27] power industry, chemical industry, welding and hot factors, explosion hazard zone, high visibility
Set S2 acid-proof jacket and acid-proof dungarees 80% polyester, 20% cotton; 225 g/m2 EN ISO 13688:2013 [21], EN 13034:2005 [25] chemical industry
Underwear
U long-sleeved t-shirt and underpants 59% Protex, 39% Cotton, 2% negastat; 205 g/m2 EN ISO 13688:2013 [21], EN ISO 11612:2015 [22], EN 1149-5:2018 [24] gas industry, fuel industry, explosion hazard zone

Air volume, air gap size, total thermal Insulation (mean value ± standard deviation) calculated by parallel method for static and dynamic test conditions

Variants Size Vt [dm3] dair [mm] Total thermal insulation It [m2oC/W] Resultant total thermal insulation Itr [m2oC/W]
U 54 16 10 0.164±0.001 0.131±0.000
U_S1(50) 50 34 21 0.204±0.001 0.166±0.000
U_S1(54) 54 39 29 0.210±0.001 0.172±0.000
U_S1(56) 56 47 30 0.217±0.000 0.169±0.000
U_S2(50) 50 34 21 0.202±0.000 0.160±0.000
U_S2(54) 54 48 24 0.205±0.002 0.164±0.000
U_S2(56) 56 50 29 0.209±0.000 0.165±0.000