[
ARDABILI, S. F. – MAHMOUDI, A. – GUNDOSHMIAN, T. M. 2016. Modeling and simulation controlling system of HVAC using fuzzy and predictive (radial basis function, RBF) controllers. In Journal of Building Engineering, vol. 6, pp. 301–308. https://doi.org/10.1016/j.jobe.2016.04.010
]Search in Google Scholar
[
ARDABILI, S. F. 2014. Simulation and comparison of control system in mushroom growing rooms environment. Tabriz, Iran : University of Tabriz, 112 pp. (Diploma thesis)
]Search in Google Scholar
[
ASLANTAS, R. – ANGIN, I. – BOYDAS, M. G. – OZKAN, G. – KARA, M. 2016. Fruit characteristics and detachment parameters of sour cherry (Prunus cerasus L. cv.‘Kütahya’) as affected by various maturity stages. In Erwerbs-Obstbau, vol. 58, pp. 127–134. DOI: https://doi.org/127-134.10.1007/s10341-016-0270-1
]Search in Google Scholar
[
AYEBAZIBWE, U. 2023. Effects of post-harvest handling on maize farmers’ income in Nkoma Sub-County Kamwenge District. In Journal of Crop Techology and Agriculture Science, vol. 5, no. 2, pp. 11–16.
]Search in Google Scholar
[
BONORA, E. – STEFANELLI, D. – COSTA, G. 2013. Nectarine fruit ripening and quality assessed using the index of absorbance difference (IAD). In International Journal of Agronomy, vol. 2013, article no. 242461. DOI: https://doi.org/10.1155/2013/242461
]Search in Google Scholar
[
CASSON, A. – BEGHI, R. – GIOVENZANA, V. – FIORINDO, I. – TUGNOLO, A. – GUIDETTI, R. 2020. Environmental advantages of visible and near infrared spectroscopy for the prediction of intact olive ripeness. In Biosystems Engineering, vol. 189, pp. 1–10. DOI: https://doi.org/10.1016/j.biosystemseng.2019.11.003
]Search in Google Scholar
[
CASSON, A. – BEGHI, R. – GIOVENZANA, V. – FIORINDO, I. – TUGNOLO, A. – GUIDETTI, R. 2019. Visible near infrared spectroscopy as a green technology: An environmental impact comparative study on olive oil analyses. In Sustainability, vol. 11, no. 9, article no. 2611. DOI: https://doi.org/10.3390/su11092611
]Search in Google Scholar
[
FLORKOWSKI, W. J. – BANKS, N. H. – SHEWFELT, R. L. – PRUSSIA, S. E. 2022. Postharvest handling: A systems approach. Cambridge, Massachusetts : Academic Press, 702 pp. ISBN 978-0-12-822845-6. DOI: https://doi.org/10.1016/C2019-0-04144-1
]Search in Google Scholar
[
HASHEMI, F. 2021. Modeling and investigation of the life cycle of the hybrid power generation process from the diesel engine. Ardabil, Iran : University of Mohaghegh Ardabili, 98 pp. (Diploma thesis)
]Search in Google Scholar
[
INFANTE, R. – CONTADOR, L. – RUBIO, P. – MESA, K. – MENESES, C. 2011. Non-destructive monitoring of flesh softening in the black-skinned Japanese plums ‘Angeleno’ and ‘Autumn beaut’ on-tree and postharvest. In Postharvest Biology and Technology, vol. 61, no. 1, pp. 35–40. DOI: https://doi.org/10.1016/j.postharvbio.2011.01.003
]Search in Google Scholar
[
JOLLIET, O. – MARGNI, M. – CHARLES, R. – HUMBERT, S. – PAYET, J. – REBITZER, G. –ROSENBAUM, R. 2003. IMPACT 2002+: A new life cycle impact assessment methodology. In International Journal of Life Cycle Assessment, vol. 8, no. 6, pp. 324–330. DOI: https://doi.org/10.1007/BF02978505
]Search in Google Scholar
[
KIRA, K. – RENDELL, L. A. 1992. A practical approach to feature selection. In SLEEMAN, D. – EDWARDS, P. (Eds). Machine Learning Proceedings 1992. Morgan Kaufmann, pp. 249–256. ISBN 9781558602472. DOI: https://doi.org/10.1016/B978-1-55860-247-2.50037-1
]Search in Google Scholar
[
LAFUENTE, V. – HERRERA, L. J. – GHINEA, R. – VAL, J. – NEGUERUELA, A. I. 2019. Determination of soluble solids content in Prunus avium by Vis-NIR equipment using linear and non-linear regression methods. In Spanish Journal of Agricultural Research, vol. 17 no. 4, article no. e0207. DOI: https://doi.org/10.5424/sjar/2019174-13891
]Search in Google Scholar
[
LIU, Y. L. – CHEN, Y.-R. – WANG, C. Y. – CHAN, D. E. – KIM, M. S. 2005. Development of a simple algorithm for the detection of chilling injury in cucumbers from visible/near-infrared hyperspectral imaging. In Applied Spectroscopy, vol. 59, no. 1, pp. 78–85. DOI: https://doi.org/10.1366/0003702052940422
]Search in Google Scholar
[
MUNAWAR, A. A. – DEVIANTI – SATRIYO, P. – BAHARI, S. A. 2022. Near infrared spectroscopy: Rapid and simultaneous approach to predict the fixed carbon, volatile matter and ash contents in biochar produced from agricultural residues. In Acta Technologica Agriculturae, vol. 25, no. 1, pp. 1–6. DOI: https://doi.org/10.2478/ata-2022-0001
]Search in Google Scholar
[
MOMENY, M. – JAHANBAKHSHI, A. – JAFARNEZHAD, K. – ZHANG, Y.-D. 2020. Accurate classification of cherry fruit using deep CNN based on hybrid pooling approach. In Postharvest Biology and Technology, vol. 166, article no. 111204. DOI: https://doi.org/10.1016/j.postharvbio.2020.111204
]Search in Google Scholar
[
NAGPALA, E. G. L. – NOFERINI, M. – FARNETI, B. – PICCININI, L. – COSTA, G. 2017. Cherry-Meter: An innovative non-destructive (vis-NIR) device for cherry fruit ripening and quality assessment. In Acta Horticulturae, vol. 1161, pp. 491–496. DOI: https://doi.org/10.17660/ActaHortic.2017.1161.78
]Search in Google Scholar
[
NAKANISHI, K. 1962. Infrared Absorption Spectroscopy, Practical. Nankodo Company Limited, Tokyo, Japan; Holden-Day, San Francisco, USA, 233 pp.
]Search in Google Scholar
[
NOWAKOWSKI, T. – NOWAKOWSKI, M. 2018. Assessment of tree sprouts pruning with various types of cutting units. In Agricultural Engineering, vol. 22, no. 1, pp. 95–103. DOI: https://doi.org/10.1515/agriceng-2018-0009
]Search in Google Scholar
[
PAPPAS, C. S. – TAKIDELLI, C. – TSANTILI, E. – TARANTILIS, P. A. – POLISSIOU, M. G. 2011. Quantitative determination of anthocyanins in three sweet cherry varieties using diffuse reflectance infrared Fourier transform spectroscopy. In Journal of Food Composition and Analysis, vol. 24, no. 1, pp. 17–21. DOI: https://doi.org/10.1016/j.jfca.2010.07.001
]Search in Google Scholar
[
POURDARBANI, R. – SABZI, S. – ARRIBAS, J. I. 2021. Nondestructive estimation of three apple fruit properties at various ripening levels with optimal Vis-NIR spectral wavelength regression data. In Heliyon, vol. 7, no. 9, article no. e07942. DOI: https://doi.org/10.1016/j.heliyon.2021.e07942
]Search in Google Scholar
[
SHAO, Y. – XUAN, G. – HU, Z. – GAO, Z. – LIU, L. 2019. Determination of the bruise degree for cherry using Vis-NIR reflection spectroscopy coupled with multivariate analysis. In PLoS One, vol. 14, no. 9, article no. e0222633. DOI: https://doi.org/10.1371/journal.pone.0222633
]Search in Google Scholar
[
SIEDLISKA, A. – BARANOWSKI, P. – ZUBIK, M. – MAZUREK, W. 2017. Detection of pits in fresh and frozen cherries using a hyperspectral system in transmittance mode. In Journal of Food Engineering, vol. 215, pp. 61–71. DOI: https://doi.org/10.1016/j.jfoodeng.2017.07.028
]Search in Google Scholar
[
SUHANDY, D. – YULIA, M. 2021. Classification of Lampung robusta specialty coffee according to differences in cherry processing methods using UV spectroscopy and chemometrics. In Agriculture, vol. 11, no. 2, article no. 109. DOI: https://doi.org/10.3390/agriculture11020109
]Search in Google Scholar
[
SZABO, G. – VITALIS, F. – HORVATH-MEZOFI, Z. – GOB, M. – AGUINAGA BOSQUEZ, J. P. – GILLAY, Z. – ZSOM, T. – NGUYEN, L. L. P. – HITKA, G. – KOVACS, Z. – FRIEDRICH, L. 2023. Application of near infrared spectroscopy to monitor the quality change of sour cherry stored under modified atmosphere conditions. In Sensors, vol. 23, no. 1, article no. 479. DOI: https://doi.org/10.3390/s23010479
]Search in Google Scholar
[
URBANOWICZ, R. J. – OLSON, R. S. – SCHMITT, P. – MEEKER, M. – MOORE, J. H. 2018. Benchmarking relief-based feature selection methods for bioinformatics data mining. In Journal of Biomedical Informatics, vol. 85, pp. 168–188. DOI: https://doi.org/10.1016/j.jbi.2018.07.015
]Search in Google Scholar
[
XING, J. – GUYER, D. 2008. Detecting internal insect infestation in tart cherry using transmittance spectroscopy. In Postharvest Biology and Technology, vol. 49, no. 3, pp. 411–416. DOI: https://doi.org/10.1016/j.postharvbio.2008.03.018
]Search in Google Scholar
[
ZIOSI, V. – NOFERINI, M. – FIORI, G. – TADIELLO, A. – TRAINOTTI, L. – CASADORO, G. – COSTA, G. 2008. A new index based on vis spectroscopy to characterize the progression of ripening in peach fruit. In Postharvest Biology and Technology, vol. 49, no. 3, pp. 319–329. DOI: https://doi.org/10.1016/j.postharvbio.2008.01.017
]Search in Google Scholar