Accès libre

Investigating the Effects of Spectroscopic Method in Estimating Soluble Solid Content Values and Firmness of Cherries from an Environmental Point of View: Prediction of Environmental Parameters with Machine Learning Method

, ,  et   
04 mars 2025
À propos de cet article

Citez
Télécharger la couverture

ARDABILI, S. F. – MAHMOUDI, A. – GUNDOSHMIAN, T. M. 2016. Modeling and simulation controlling system of HVAC using fuzzy and predictive (radial basis function, RBF) controllers. In Journal of Building Engineering, vol. 6, pp. 301–308. https://doi.org/10.1016/j.jobe.2016.04.010 Search in Google Scholar

ARDABILI, S. F. 2014. Simulation and comparison of control system in mushroom growing rooms environment. Tabriz, Iran : University of Tabriz, 112 pp. (Diploma thesis) Search in Google Scholar

ASLANTAS, R. – ANGIN, I. – BOYDAS, M. G. – OZKAN, G. – KARA, M. 2016. Fruit characteristics and detachment parameters of sour cherry (Prunus cerasus L. cv.‘Kütahya’) as affected by various maturity stages. In Erwerbs-Obstbau, vol. 58, pp. 127–134. DOI: https://doi.org/127-134.10.1007/s10341-016-0270-1 Search in Google Scholar

AYEBAZIBWE, U. 2023. Effects of post-harvest handling on maize farmers’ income in Nkoma Sub-County Kamwenge District. In Journal of Crop Techology and Agriculture Science, vol. 5, no. 2, pp. 11–16. Search in Google Scholar

BONORA, E. – STEFANELLI, D. – COSTA, G. 2013. Nectarine fruit ripening and quality assessed using the index of absorbance difference (IAD). In International Journal of Agronomy, vol. 2013, article no. 242461. DOI: https://doi.org/10.1155/2013/242461 Search in Google Scholar

CASSON, A. – BEGHI, R. – GIOVENZANA, V. – FIORINDO, I. – TUGNOLO, A. – GUIDETTI, R. 2020. Environmental advantages of visible and near infrared spectroscopy for the prediction of intact olive ripeness. In Biosystems Engineering, vol. 189, pp. 1–10. DOI: https://doi.org/10.1016/j.biosystemseng.2019.11.003 Search in Google Scholar

CASSON, A. – BEGHI, R. – GIOVENZANA, V. – FIORINDO, I. – TUGNOLO, A. – GUIDETTI, R. 2019. Visible near infrared spectroscopy as a green technology: An environmental impact comparative study on olive oil analyses. In Sustainability, vol. 11, no. 9, article no. 2611. DOI: https://doi.org/10.3390/su11092611 Search in Google Scholar

FLORKOWSKI, W. J. – BANKS, N. H. – SHEWFELT, R. L. – PRUSSIA, S. E. 2022. Postharvest handling: A systems approach. Cambridge, Massachusetts : Academic Press, 702 pp. ISBN 978-0-12-822845-6. DOI: https://doi.org/10.1016/C2019-0-04144-1 Search in Google Scholar

HASHEMI, F. 2021. Modeling and investigation of the life cycle of the hybrid power generation process from the diesel engine. Ardabil, Iran : University of Mohaghegh Ardabili, 98 pp. (Diploma thesis) Search in Google Scholar

INFANTE, R. – CONTADOR, L. – RUBIO, P. – MESA, K. – MENESES, C. 2011. Non-destructive monitoring of flesh softening in the black-skinned Japanese plums ‘Angeleno’ and ‘Autumn beaut’ on-tree and postharvest. In Postharvest Biology and Technology, vol. 61, no. 1, pp. 35–40. DOI: https://doi.org/10.1016/j.postharvbio.2011.01.003 Search in Google Scholar

JOLLIET, O. – MARGNI, M. – CHARLES, R. – HUMBERT, S. – PAYET, J. – REBITZER, G. –ROSENBAUM, R. 2003. IMPACT 2002+: A new life cycle impact assessment methodology. In International Journal of Life Cycle Assessment, vol. 8, no. 6, pp. 324–330. DOI: https://doi.org/10.1007/BF02978505 Search in Google Scholar

KIRA, K. – RENDELL, L. A. 1992. A practical approach to feature selection. In SLEEMAN, D. – EDWARDS, P. (Eds). Machine Learning Proceedings 1992. Morgan Kaufmann, pp. 249–256. ISBN 9781558602472. DOI: https://doi.org/10.1016/B978-1-55860-247-2.50037-1 Search in Google Scholar

LAFUENTE, V. – HERRERA, L. J. – GHINEA, R. – VAL, J. – NEGUERUELA, A. I. 2019. Determination of soluble solids content in Prunus avium by Vis-NIR equipment using linear and non-linear regression methods. In Spanish Journal of Agricultural Research, vol. 17 no. 4, article no. e0207. DOI: https://doi.org/10.5424/sjar/2019174-13891 Search in Google Scholar

LIU, Y. L. – CHEN, Y.-R. – WANG, C. Y. – CHAN, D. E. – KIM, M. S. 2005. Development of a simple algorithm for the detection of chilling injury in cucumbers from visible/near-infrared hyperspectral imaging. In Applied Spectroscopy, vol. 59, no. 1, pp. 78–85. DOI: https://doi.org/10.1366/0003702052940422 Search in Google Scholar

MUNAWAR, A. A. – DEVIANTI – SATRIYO, P. – BAHARI, S. A. 2022. Near infrared spectroscopy: Rapid and simultaneous approach to predict the fixed carbon, volatile matter and ash contents in biochar produced from agricultural residues. In Acta Technologica Agriculturae, vol. 25, no. 1, pp. 1–6. DOI: https://doi.org/10.2478/ata-2022-0001 Search in Google Scholar

MOMENY, M. – JAHANBAKHSHI, A. – JAFARNEZHAD, K. – ZHANG, Y.-D. 2020. Accurate classification of cherry fruit using deep CNN based on hybrid pooling approach. In Postharvest Biology and Technology, vol. 166, article no. 111204. DOI: https://doi.org/10.1016/j.postharvbio.2020.111204 Search in Google Scholar

NAGPALA, E. G. L. – NOFERINI, M. – FARNETI, B. – PICCININI, L. – COSTA, G. 2017. Cherry-Meter: An innovative non-destructive (vis-NIR) device for cherry fruit ripening and quality assessment. In Acta Horticulturae, vol. 1161, pp. 491–496. DOI: https://doi.org/10.17660/ActaHortic.2017.1161.78 Search in Google Scholar

NAKANISHI, K. 1962. Infrared Absorption Spectroscopy, Practical. Nankodo Company Limited, Tokyo, Japan; Holden-Day, San Francisco, USA, 233 pp. Search in Google Scholar

NOWAKOWSKI, T. – NOWAKOWSKI, M. 2018. Assessment of tree sprouts pruning with various types of cutting units. In Agricultural Engineering, vol. 22, no. 1, pp. 95–103. DOI: https://doi.org/10.1515/agriceng-2018-0009 Search in Google Scholar

PAPPAS, C. S. – TAKIDELLI, C. – TSANTILI, E. – TARANTILIS, P. A. – POLISSIOU, M. G. 2011. Quantitative determination of anthocyanins in three sweet cherry varieties using diffuse reflectance infrared Fourier transform spectroscopy. In Journal of Food Composition and Analysis, vol. 24, no. 1, pp. 17–21. DOI: https://doi.org/10.1016/j.jfca.2010.07.001 Search in Google Scholar

POURDARBANI, R. – SABZI, S. – ARRIBAS, J. I. 2021. Nondestructive estimation of three apple fruit properties at various ripening levels with optimal Vis-NIR spectral wavelength regression data. In Heliyon, vol. 7, no. 9, article no. e07942. DOI: https://doi.org/10.1016/j.heliyon.2021.e07942 Search in Google Scholar

SHAO, Y. – XUAN, G. – HU, Z. – GAO, Z. – LIU, L. 2019. Determination of the bruise degree for cherry using Vis-NIR reflection spectroscopy coupled with multivariate analysis. In PLoS One, vol. 14, no. 9, article no. e0222633. DOI: https://doi.org/10.1371/journal.pone.0222633 Search in Google Scholar

SIEDLISKA, A. – BARANOWSKI, P. – ZUBIK, M. – MAZUREK, W. 2017. Detection of pits in fresh and frozen cherries using a hyperspectral system in transmittance mode. In Journal of Food Engineering, vol. 215, pp. 61–71. DOI: https://doi.org/10.1016/j.jfoodeng.2017.07.028 Search in Google Scholar

SUHANDY, D. – YULIA, M. 2021. Classification of Lampung robusta specialty coffee according to differences in cherry processing methods using UV spectroscopy and chemometrics. In Agriculture, vol. 11, no. 2, article no. 109. DOI: https://doi.org/10.3390/agriculture11020109 Search in Google Scholar

SZABO, G. – VITALIS, F. – HORVATH-MEZOFI, Z. – GOB, M. – AGUINAGA BOSQUEZ, J. P. – GILLAY, Z. – ZSOM, T. – NGUYEN, L. L. P. – HITKA, G. – KOVACS, Z. – FRIEDRICH, L. 2023. Application of near infrared spectroscopy to monitor the quality change of sour cherry stored under modified atmosphere conditions. In Sensors, vol. 23, no. 1, article no. 479. DOI: https://doi.org/10.3390/s23010479 Search in Google Scholar

URBANOWICZ, R. J. – OLSON, R. S. – SCHMITT, P. – MEEKER, M. – MOORE, J. H. 2018. Benchmarking relief-based feature selection methods for bioinformatics data mining. In Journal of Biomedical Informatics, vol. 85, pp. 168–188. DOI: https://doi.org/10.1016/j.jbi.2018.07.015 Search in Google Scholar

XING, J. – GUYER, D. 2008. Detecting internal insect infestation in tart cherry using transmittance spectroscopy. In Postharvest Biology and Technology, vol. 49, no. 3, pp. 411–416. DOI: https://doi.org/10.1016/j.postharvbio.2008.03.018 Search in Google Scholar

ZIOSI, V. – NOFERINI, M. – FIORI, G. – TADIELLO, A. – TRAINOTTI, L. – CASADORO, G. – COSTA, G. 2008. A new index based on vis spectroscopy to characterize the progression of ripening in peach fruit. In Postharvest Biology and Technology, vol. 49, no. 3, pp. 319–329. DOI: https://doi.org/10.1016/j.postharvbio.2008.01.017 Search in Google Scholar

Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Ingénierie, Présentations et aperçus, Ingénierie, autres