Accesso libero

Biosensors in Evaluation of Quality of Meat and Meat Products – A Review

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Adley C.(2014). Past, present and future of sensors in food production. Foods, 3: 491–510.10.3390/foods3030491Search in Google Scholar

Albelda J.A.V., Uzunoglu A., Santos G.N.C., Stanciu L.A.(2016). Graphene-titanium dioxide nanocomposite based hypoxanthine sensor for assessment of meat freshness. Biosens. Bioelectron., 89: 518–524.10.1016/j.bios.2016.03.041Search in Google Scholar

Aristoy M.C., ToldráF.(2009). Nucleotides and its derived compounds. In: Handbook of Muscle Foods Analysis, Nollet L.M.L., Toldrá F. (eds). CRC Press Inc. Taylor & Francis Group, USA, pp. 279–290.10.1201/9781420045307.ch16Search in Google Scholar

Balasubramanian S., Panigrahi S., Logue C.M., Marchello M., Doetkott C., Gu H., Sherwood J., Nolan L.(2004). Spoilage identification of beef using an electronic nose system. Transactions of the ASAE, 47: 1625–1633.10.13031/2013.17593Search in Google Scholar

Banerjee P., Lenz D., Robinson J.P., Rickus J.L., Bhunia A.K.(2008). A novel and simple cell-based detection system with a collagen-encapsulated B-lymphocyte cell line as a biosensor for rapid detection of pathogens and toxins. Lab. Investig., 88: 196–206.10.1038/labinvest.3700703Search in Google Scholar

Basavanna U., Muruvanda T., Brown E.W., Sharma S.K.(2013). Development of a cellbased functional assay for the detection of Clostridium botulinum neurotoxin types A and E. Int. J. Microbiol., http://dx.doi.org/10.1155/2013/593219.10.1155/2013/593219360672723533420Search in Google Scholar

Bhunia A.K.(2012). Highly specific fiber optic immunosensor coupled with immunomagnetic separation for detection of low levels of Listeria monocytogenes and L. ivanovii. BMC Microbiol., 12: 275.Search in Google Scholar

Bratcher C.L., Grant S.A., Vassalli J.T., Lorenzen C.L.(2008a). Enhanced efficiency of a capillary-based biosensor over an optical fiber biosensor for detecting calpastatin. Biosens. Bioelectron., 2: 1674–1679.10.1016/j.bios.2008.01.02718343100Search in Google Scholar

Bratcher C.L., Grant S.A., Vassalli T., Lorenzen C.L.(2008b). Enhanced efficiency of a capillary-based biosensor over an optical fiber biosensor for detecting calpastatin. Biosens. Bioelectron., 23: 429–1434.10.1016/j.bios.2008.01.027Search in Google Scholar

Buła M., Przybylski W., Jaworska D., Kajak-Siemaszko K.(2019). Formation of heterocyclic aromatic amines in relation to pork quality and heat treatment parameters. Food Chem., 276: 511–519.10.1016/j.foodchem.2018.10.073Search in Google Scholar

Cai He.X., Cui P.L., Liu J., Li Z.B., Jia B.J., Zhang T., Wang J.P., Yuan W.Z.(2019). Preparation of a chemiluminescence sensor for multi-detection of benzimidazoles in meat based on molecularly imprinted polymer. Food Chem., 280: 103–109.10.1016/j.foodchem.2018.12.052Search in Google Scholar

Centersfor Disease Controland Prevention(2016). Multistate Outbreak of Shiga toxin-producing Escherichia coli O157:H7 Infections Linked to Beef Products Produced by Adams Farm (Final Update); https://www.cdc.gov/ecoli/2016/o157h7-09-16/index.htmlSearch in Google Scholar

Chauhan N., Narang J., Jain U.(2016). Amperometric acetylcholinesterase biosensor for pesticides monitoring utilising iron oxide nanoparticles and poly (indole-5-carboxylic acid). J. Exp. Nanosci., 11: 111–122.10.1080/17458080.2015.1030712Search in Google Scholar

Chauhan N., Jain U., Soni S.(2019). Sensors for food quality monitoring. In: Nanoscience for Sustainable Agriculture, Pudake R., Chauhan N., Kole C. (eds.).Springer Nature Switzerland AG 2019, Sensors for Food Quality, https://doi.org/10.1007/978-3-319-97852-9_23.10.1007/978-3-319-97852-9_23Search in Google Scholar

Cháfer-Pericás C., MaquieiraÁ., Puchades R.(2010). Fast screening methods to detect antibiotic residues in food samples. Trends Anal. Chem., 29: 1038–1049.10.1016/j.trac.2010.06.004Search in Google Scholar

Che Y., Li Y., Slavik M.(2001). Detection of Campylobacter jejuni in poultry samples using an enzyme-linked immunoassay coupled with an enzyme electrode. Biosens. Bioelectron., 16: 791–797.10.1016/S0956-5663(01)00222-6Search in Google Scholar

Chen D., Yao D., Xie C., Liu D.(2014). Development of an aptasensor for electrochemical detection of tetracycline. Food Control, 42: 109–115.10.1016/j.foodcont.2014.01.018Search in Google Scholar

Chen Y., Qian C., Liu C., Shen H., Wang Z., Ping J., Wu J., Chen H.(2020). Nucleic acid amplification free biosensors for pathogen detection. Biosens. and Bioelectron., 153: 112049.10.1016/j.bios.2020.112049Search in Google Scholar

Choe J.H., Choi Y.M., Lee S.H., Nam Y.J., Jung Y.C., Park H.C., Kim Y.Y., Kim B.C.(2009). The relation of blood glucose level to muscle fiber characteristics and pork quality traits. Meat Sci., 83: 62–67.10.1016/j.meatsci.2009.03.011Search in Google Scholar

Choe J., Choi M., Ryu Y., Go G., Kim B.C.(2015a). Estimation of pork quality traits using exsanguination blood and postmortem muscle metabolites. Asian-Australas. J. Anim. Sci., 28: 862.10.5713/ajas.14.0768441298325925063Search in Google Scholar

Choe J.H.Choi M.H., Ryu Y.C., Lim K-S., Lee E-A., Kang J-H., Hong K.C., Lee S.K., Kim Y.T., Moon S.S., Lee K.W., Rhee M.S., Kim B.C.(2015b). Correlations among various blood parameters at exsanguination and their relationships to pork quality traits. Anim. Prod. Sci., 55: 672–679.10.1071/AN13424Search in Google Scholar

Choi Y.M., Ryu Y.C., Kim B.C.(2007). Influence of myosin heavy and light chain isoforms on early postmortem glycolytic rate and pork quality. Meat Sci., 76: 281–288.10.1016/j.meatsci.2006.11.009Search in Google Scholar

Cinti S., Volpe G., Piermarini S., Delibato E., Palleschi G.(2017). Electrochemical biosensors for rapid detection of foodborne salmonella: A Critical Overview. Sensors (Basel), https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5579882/10.3390/s17081910557988228820458Search in Google Scholar

Clark L.C.Jr., Lyons C.(1962). Electrode systems for continuous monitoring in cardiovascular surgery. Ann. NY Acad. Sci., 102: 29–45.10.1111/j.1749-6632.1962.tb13623.xSearch in Google Scholar

Cock L.S., Arenas A.M.Z., Aponte A.A.(2009). Use of enzymatic biosensors as quality indices: a synopsis of present and future trends in the food industry. Chil. J. Agr. Res., 69: 270–280.10.4067/S0718-58392009000200017Search in Google Scholar

Daszczuk A., Dessalegne Y., Drenth I., Hendriks E., Jo E., Lente T., Oldebesten A., Parrish J., Poljakova W, Purwanto A., Raaphorst R., Boonstra M., Heel A., Herber M., Meulen S., Siebring J., Robin A.R.A., Heinemann M.P., Kuipers O.P, Veening J.W.(2014). Bacillus subtilis biosensor engineered to assess meat spoilage. ACS Synth. Biol., 3: 999−1002.10.1021/sb5000252Search in Google Scholar

Dave D., Ghaly A.(2011). Meat spoilage mechanisms and preservation techniques: a critical review. Am. J. Agr. Biol. Sci., 6: 486–510.10.3844/ajabssp.2011.486.510Search in Google Scholar

European Commission(2005). Commission Regulation (EC) No 2073/2005 on microbiological criteria for foodstuffs. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2005:338:0001:0026:ENSearch in Google Scholar

FAO/WHO(2011). Tackling Antibiotic Resistance from a Food Safety Perspective in Europe. www.euro.who.int/data/assets/pdf_file/0005/136454/e94889Search in Google Scholar

Ferguson J., Baxter A., Young P., Kennedy G., Elliott C., Weigel S., Gatermann R., Ashwin H., Stead S., Sharman M.(2005). Detection of chloramphenicol and chloramphenicol glucuronide residues in poultry muscle, honey, prawn and milk using a surface plasmon resonance biosensor and Qflex® kit chloramphenicol. Anal. Chim. Acta, 529: 109–113.10.1016/j.aca.2004.11.042Search in Google Scholar

Fernandez X., Tornberg E.(1991). A review if causes of variation in muscle glycogen content and ultimate pH in pigs. J. Muscle Foods, 2: 209–235.10.1111/j.1745-4573.1991.tb00454.xSearch in Google Scholar

Ferreira S., De Souza M.B., Trierweiler J.O., Broxtermann O., Folly R.M., Hitzmann B.(2003). Aspects concerning the use of biosensors for process control: experimental and simulation investigations. Comput. Chem. Eng., 27: 1165–1173.10.1016/S0098-1354(03)00044-9Search in Google Scholar

Gao F., Feng S., Chen Z., Li-Chan E.C., Grant E., Lu X.(2014). Detection and quantification of chloramphenicol in milk and honey using molecularly imprinted polymers: Canadian pennybased SERS nanobiosensor. J. Food Sci., 79: 2542–25499.10.1111/1750-3841.12705Search in Google Scholar

Geesink G.H., Vander Pale J.G.P., Kent P., Veiseth E., Hemke G., Koohmaraie M.(2005). Quantification of calpastatin using an optical surface plasmon resonance biosensor. Meat Sci., 71: 537–541.10.1016/j.meatsci.2005.04.037Search in Google Scholar

Grant S.A., Stringer R.C., Studer S., Lichlyte D., Lorenzen C.L.(2005). Viability of a FRET dual binding technique to detect calpastatin. Biosens. Bioelectron., 21: 438–444.10.1016/j.bios.2004.11.013Search in Google Scholar

Greaser M.L.(2009). Proteins. In: Handbook of Muscle Foods Analysis, Nollet L.M.L., Toldrá F. (eds). CRC Press Taylor & Francis Group, USA, pp. 57–74.10.1201/9781420045307.ch4Search in Google Scholar

Gregula-Kania M.(2012). Effect of calpastatin gene polymorphism on lamb growth and muscling. Ann. Anim. Sci., 12: 63–72.10.2478/v10220-012-0005-7Search in Google Scholar

Gupta V., Saharan K., Kumar L., Gupta R., Sahai V., Mittal A.(2008). Spectrophotometric ferric ion biosensor from Pseudomonas fluorescens culture. Biotechnol. Bioeng., 100: 284–296.10.1002/bit.21754Search in Google Scholar

Haasnoot W., Gerçek H., Cazemier G., Nielen M.W.(2007). Biosensor immunoassay for flumequine in broiler serum and muscle. Anal. Chim. Acta, 586: 312–318.10.1016/j.aca.2006.10.003Search in Google Scholar

Hamilton D.N., Miller K.D., Elli M., Mc Keith F.K., Wilson E.R.(2003). Relationships between longissimus glycolytic potential and swine growth performance, carcass traits, and pork quality. J. Anim. Sci., 81: 2206–2212.10.2527/2003.8192206xSearch in Google Scholar

Hargreaves A.B., Barrales L.V., Barrales D.Z., Riveros J.L.F., Peña I.R.(2009). Glycogen determination in bovine muscle: a proposal for rapid determination. Chil. J. Agr. Res., 69: 366–372.10.4067/S0718-58392009000300009Search in Google Scholar

Hernández-Cázares A.S., Aristoy M.C., ToldráF.(2010). Hypoxanthine-based enzymatic sensor for determination of pork meat freshness. Food Chem., 123: 949–954.10.1016/j.foodchem.2010.04.066Search in Google Scholar

Hopkins D.L., Geesink G.H.(2009). Protein degradation post mortem and tenderization. In: Applied Muscle Biology and Meat Science, Du M., McCormick J. R. (eds). CRC Press Inc., Taylor & Francis Group, USA. pp. 149–173.Search in Google Scholar

Hopkins D.L., Thompson J.M.(2001). The relationship between tenderness, proteolysis, muscle contraction and dissociation of actomyosin. Meat Sci., 57: 1–12.10.1016/S0309-1740(00)00065-6Search in Google Scholar

Johnson J., Atkin D., Lee K., Sell M., Chandra S.(2019). Determining meat freshness using electrochemistry: Are we ready for the fast and furious? Meat Sci., 150: 40–46.10.1016/j.meatsci.2018.12.002Search in Google Scholar

Kalač P. (2006). Biologically active polyamines in beef, pork and meat products: a review. Meat Sci., 73: 1–11.10.1016/j.meatsci.2005.11.001Search in Google Scholar

Kim B.S., Kim G.W., Heo N.S., Kim M.S., Yang K.S., Lee S.Y., Park T.J.(2015). Development of a portable biosensor system for pesticide detection on a metal chip surface integrated with wireless communication. Food Sci. Biotechnol., 24: 743–750.10.1007/s10068-015-0096-xSearch in Google Scholar

Lee J.H., Han Y.D., Song S.Y., Kim T.D., Yoon H.C.(2010). Biosensor for organophosphorus pesticides based on the acetylcholine esterase inhibition mediated by choline oxidase bioelectrocatalysis. BioChip J., 4: 223–229.10.1007/s13206-010-4310-xSearch in Google Scholar

Liang P.S., Park T.S., Yoon J.Y.(2014). Rapid and reagentless detection of microbial contamination within meat utilizing a smartphone-based biosensor. Sci. Rep., 4: 1–7.10.1038/srep05953Search in Google Scholar

Liu X., Zheng S., Hu Y., Li Z., Luo F., He Z.(2016). Electrochemical immunosensor based on the chitosan-magnetic nanoparticles for detection of tetracycline. Food Anal. Methods, 9: 2972–2978.10.1007/s12161-016-0480-zSearch in Google Scholar

Luo Y., Alocilja E.C.(2017). Portable nuclear magnetic resonance biosensor and assay for a highly sensitive and rapid detection of foodborne bacteria in complex matrices. J. Biol. Eng., 11: 14.10.1186/s13036-017-0053-8Search in Google Scholar

Manganye P., Desai B., Daka M., Bismilla R.(2018). Listeriosis in the City of Johannesburg, South Africa. S. Afr. J. Public Health, 2: 55–58.Search in Google Scholar

Mc Grath T., Baxter A., Ferguson J., Haughey S., Bjurling P.(2005). Multi sulfonamide screening in porcine muscle using a surface plasmon resonance biosensor. Anal. Chim. Acta, 529: 123–127.10.1016/j.aca.2004.10.054Search in Google Scholar

Mendonça M., Conrad N.L., Conceição F., Moreira A.N., de Silva W.P., Aleixo J.A.G., Bhunia A.K.(2012). Highly specific fiber optic immunosensor coupled with immunomagnetic separation for detection of low levels of Listeria monocytogenes and L. ivanovii. BMC Microbiol., 12: 275.10.1186/1471-2180-12-275Search in Google Scholar

Monin G., Sellier P.(1985). Pork of low technological quality with a normal rate of muscle pH fall in the immediate post-mortem period: the case of the Hampshire breed. Meat Sci, 13: 49–63.10.1016/S0309-1740(85)80004-8Search in Google Scholar

Morant-Miñana M.C., Elizalde J.(2015). Microscale electrodes integrated on COP for real sample Campylobacter spp. detection. Biosens. Bioelectron., 70: 491–497.10.1016/j.bios.2015.03.063Search in Google Scholar

Mungroo N.A., Neethirajan N.(2014). Biosensors for the detection of antibiotics in poultry industry – a review. Biosensors, 4: 472–493.10.3390/bios4040472Search in Google Scholar

Narsaiah K., Jha S.N., Bhardwaj R., Sharma R., Kumar R.(2012). Optical biosensors for food quality and safety assurance – a review. J. Food Sci. Technol., 49: 383–406.10.1007/s13197-011-0437-6Search in Google Scholar

Newman J.D., Setford S.J.(2006). Enzymatic biosensors. Mol. Biotechnol., 32: 249–268.10.1385/MB:32:3:249Search in Google Scholar

Ohk S.H., Koo O.K., Sen T., Yamamoto C.M., Bhunia A.K.(2010). Antibody aptamer functionalized fibre-optic biosensor for specific detection of Listeria monocytogenes from food. J. Appl. Microbiol., 109: 808–817.10.1111/j.1365-2672.2010.04709.xSearch in Google Scholar

Otles S., Yalcin B.(2016). Review on the application of nanobiosensors in food analysis. Acta Sci. Pol. Technol. Aliment., 11: 7–18.Search in Google Scholar

Park I.S., Kim N.(2006). Development of a chemiluminescent immunosensor for chloramphenicol. Anal. Chim. Acta, 578: 19–24.10.1016/j.aca.2006.07.015Search in Google Scholar

Parra-Bracamonte G.M., Martinez-Gonzalez J.C., Sifuentes-Rincon A.M., Moreno-Medina V.R., Ortega-Rivas E.(2015). Meat tenderness genetic polymorphisms occurrence and distribution in five Zebu breeds in Mexico. Electron. J. Biotechnol., 18: 365–367.10.1016/j.ejbt.2015.07.002Search in Google Scholar

Pauly D., Kirchner S., Stoermann B., Schreiber T., Kaulfuss S., Schade R, Zbinden R., Avonde M.A., Dorner M.B., Dorner B.G.(2009). Simultaneous quantification of five bacterial toxins and plant toxins from complex matrices using a multiplexed fluorescent magnetic suspension assay. Analyst, 134: 2028–2039.10.1039/b911525kSearch in Google Scholar

Przybylski W., Venin P., Monin G.(1994). Relationship between glycolytic potential and ultimate pH in bovine, porcine and ovine muscles. J. Muscle Foods, 5: 245–255.10.1111/j.1745-4573.1994.tb00534.xSearch in Google Scholar

Przybylski W., Gromadzka-Ostrowska J., Olczak E., Jaworska D., Niemyjski S., Santé-Lhoutellier V.(2009). Analysis of variability of plasma leptin and lipids concentration in relations to glycolytic potential, intramuscular fat and meat quality in P76 pigs. J. Anim. Feed Sci., 18: 296–304.10.22358/jafs/66394/2009Search in Google Scholar

Przybylski W., Sionek B., Jaworska D., Santé-Lhoutellier V.(2016). The application of biosensors for drip loss analysis and glycolytic potential evaluation. Meat Sci., 117: 7–11.10.1016/j.meatsci.2016.02.025Search in Google Scholar

Rana J.S., Jindal J., Beniwal V., Chhokar V.(2010). Utility biosensors for applications in agriculture – a review. J. Am. Sci., 6: 353–375.Search in Google Scholar

Reder-Christ K., Bendas G.(2011). Biosensor applications in the field of antibiotic researcha review of recent developments. Sensors, 11: 9450–9466.10.3390/s111009450Search in Google Scholar

Shackelfor S.D., Koohmaraie M., Cundiff L.V., Gregory K.E., Rohrer G.A., Savell J.W.(1994). Heritabilities and phenotypic and genetic correlations for bovine postrigor calpastatin activity, intramuscular fat content, Warner-Bratzler shear force, retail product yield, and growth rate. J. Anim. Sci., 72: 857–863.10.2527/1994.724857xSearch in Google Scholar

Sharifi S., Vahed S.Z., Ahmadian E., Dizaj S.M., Eftekhari A., Khalilov R., Ahmadi M., Hamidi-Asl E., Labib M.(2020). Detection of pathogenic bacteria via nanomaterials-modified aptasensors. Biosens. and Bioelectron., 150: 111933.10.1016/j.bios.2019.111933Search in Google Scholar

Singh P.K., Jairath G., Ahlawat S.S., Pathera A., Singh P.(2016). Biosensor: an emerging safety tool for meat industry. J. Food Sci. Technol., 53:1759–1765.10.1007/s13197-015-2041-7Search in Google Scholar

Song M.S., Sekhon SS, Shin W.R., Kim H.C., Ahn J.Y., Kim Y.H.(2017). Detecting and discriminating Shigella sonnei using an aptamer-based fluorescent biosensor platform. Molecules, 22: 825.10.3390/molecules22050825Search in Google Scholar

Stevens R.C., Soelberg S.D., Eberhart B.L., Spencer S., Wekelld J.C., Chinowsky T.M., Trainer V.L., Furlong C.E.(2007). Detection of the toxin domoic acid from clam extracts using a portable surface plasmon resonance biosensor. Harmful Algae, 6: 166–174.10.1016/j.hal.2006.08.001Search in Google Scholar

Sun X., Cao Y., Gong Z., Wang X., Zhang Y., Gao J.(2012). An amperometric immunosensor based on multi-walled carbon nanotubes-thionine-chitosan nanocomposite film for chlorpyrifos detection. Sensors, 12: 17247–17261.10.3390/s121217247Search in Google Scholar

Van Eenennaam A.L., Li J., Thallman R.M., Quaas R.L., Dikeman M.E., Gill C.A., Franke D.E., Thomas M.G.(2007). Validation of commercial DNA tests for quantitative beef quality traits. J. Anim. Sci., 85: 891–900.10.2527/jas.2006-512Search in Google Scholar

Verma N., Kumar S., Kaur H.(2010). Fiber optic biosensor for the detection of Cd in milk. Biosens. Bioelectron., 1:102.10.4172/2155-6210.1000102Search in Google Scholar

Wang Y., Wang Y., Xu J., Ye C.(2016). Development of multiple cross displacement amplification label-based gold nanoparticles lateral flow biosensor for detection of Shigella. Front. Microbiol., 7: 1834.10.3389/fmicb.2016.01834Search in Google Scholar

Whipple G., Koohmaraie M., Dikeman M.E., Crouse J.D.(1990). Predicting beef-longissimus tenderness from various biochemical and histological muscle traits. J. Anim. Sci., 68: 4193–4199.10.2527/1990.68124193xSearch in Google Scholar

Wolter A., Niessner R., Seidel M.(2008). Detection of Escherichia coli O157: H7, Salmonella typhimurium and Legionella pneumophila in water using a flow-through chemiluminescence microarray readout system. Anal. Chem., 80: 5854–5863.10.1021/ac800318bSearch in Google Scholar

Xiang C., Li R., Adhikari B., She Z., Li Y.(2015). Sensitive electrochemical detection of Salmonella with chitosan-gold nanoparticles composite film. Talanta, 140: 122–127.10.1016/j.talanta.2015.03.033Search in Google Scholar

Yamada K., Kim Ch., Kim J., Chung J., Lee H.L., Jun S.(2014). Single walled carbon nanotube-based junction biosensor for detection of Escherichia coli. PLOS One, 9: e105767. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.010576710.1371/journal.pone.0105767416940425233366Search in Google Scholar

Yano Y., Kataho N., Mino W., Nakamura T., Asano Y.(1995). Evaluation of beef aging by determination of hypoxanthine and xanthine contents: application of a xanthine sensor. Food Chem., 52: 439–445.10.1016/0308-8146(95)93297-5Search in Google Scholar

Young O.A., West J., Hart A.L., van Otterdijk F.F.H.(2004). A method for early determination of meat ultimate pH. Meat Sci., 66: 493–498.10.1016/S0309-1740(03)00140-2Search in Google Scholar

Zhang X., Tsuji S., Kitaoka H., Kobayashi H., Tamai M., Honjoh K., Miyamoto T.(2017). Simultaneous detection of Escherichia coli O157:H7, Salmonella enteritidis, and Listeria monocytogenes at a very low level using simultaneous enrichment broth and multichannel SPR Biosensor. J. Food Sci., 82: 2357–2363.10.1111/1750-3841.13843Search in Google Scholar

Zhao X., Lin C.W., Wang J., Oh D.H.(2014). Advances in rapid detection methods for foodborne pathogens. J. Microbiol. Biotechnol., 24: 297–312.10.4014/jmb.1310.10013Search in Google Scholar

Zhou L., Li D.J., Gai L., Wang J.P., Li Y.B.(2012). Electrochemical aptasensor for the detection of tetracycline with multi-walled carbon nanotubes amplification. Sensor. Actuators B: Chemical, 162: 201–208.10.1016/j.snb.2011.12.067Search in Google Scholar

Zór K., Castellarnau M., Pascual D., Pich S., Plasencia C., Bardsley R., Nistor M.(2011). Development and application of a bioelectrochemical detection system for meat tenderness prediction. Biosens. Bioelectron., 26: 4283–4288.10.1016/j.bios.2011.04.011Search in Google Scholar

Zybert A., Sieczkowska H., Antosik K., Krzęcio-Nieczyporuk E., Adamczyk G., Koćwin-Podsiadła M.(2016). Relationship between glycolytic potential and meat quality of Duroc pigs with consideration of carcass chilling system. Ann. Anim. Sci., 13: 645–654.10.2478/aoas-2013-0028Search in Google Scholar

eISSN:
2300-8733
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine