[Abdel-Daim M.M., Eissa I.A.M., Abdeen A., Abdel-Latif H.M.R., Ismail M., Dawood M.A.O., Hassan A.M. (2019). Lycopene and resveratrol ameliorate zinc oxide nanoparticles-induced oxidative stress in Nile tilapia, Oreochromis niloticus. Environ, Toxicol. Pharmacol., 69:44-50.10.1016/j.etap.2019.03.016]Search in Google Scholar
[Abdel-Warith A., Russell P., Davies S. (2001). Inclusion of a commercial poultry by-product meal as a protein replacement of fish meal in practical diets for African catfish Clarias gariepinus (Burchell 1822). Aquacult. Res., 32:296-305.10.1046/j.1355-557x.2001.00053.x]Search in Google Scholar
[Alexander C., Sahu N.P., Pal A.K., Akhtar M.S. (2011). Haemato-immunological and stress responses of Labeo rohita (Hamilton) fingerlings: effect of rearing temperature and dietary gelatinized carbohydrate. J. Anim. Physiol. Anim. Nutr., 95:653-663.10.1111/j.1439-0396.2010.01096.x]Search in Google Scholar
[AOAC (2007). Method 2007-04. Association of Official Analytical Chemists. Washington, DC. Bairagi A., Ghosh K.S., Sen S., Ray A. (2002). Duckweed (Lemna polyrhiza) leaf meal as a source of feedstuff in formulated diets for rohu (Labeo rohita Ham.) fingerlings after fermentation with a fish intestinal bacterium. Bioresour. Technol., 85:17-24.10.1016/S0960-8524(02)00067-6]Search in Google Scholar
[Bancroft J., Stevens A., Turner D. (1996). Theory and practice of histological techniques: Churchill Livingstone New York. the text. 766.]Search in Google Scholar
[Barišić J., Marijić V.F., Mijošek T., Čož-Rakovac R., Dragun Z., Krasnići N., Ivanković D., Kružlicová D., Erk M. (2018). Evaluation of architectural and histopathological biomarkers in the intestine of brown trout (Salmo trutta Linnaeus, 1758) challenged with environmental pollution. Sci. Total Environ., 642:656-664.10.1016/j.scitotenv.2018.06.045]Search in Google Scholar
[Blaxhall P.C., Daisley K.W. (1973). Routine haematological methods for use with fish blood. J. Fish Biol., 5:771-781.10.1111/j.1095-8649.1973.tb04510.x]Search in Google Scholar
[Borges A., Scotti L.V., Siqueira D.R., Jurinitz D.F., Wassermann G.F. (2004). Hematologic and serum biochemical values for jundiá (Rhamdia quelen). Fish Physiol. Biochem., 30:21-25.10.1007/s10695-004-5000-1]Search in Google Scholar
[Borlongan, I.G., 1990. Studies on the digestive lipases of milkfish, Chanos chanos. Aquaculture 89, 315-325.10.1016/0044-8486(90)90135-A]Search in Google Scholar
[Caspary W.F. (1992). Physiology and pathophysiology of intestinal absorption. Oxford University Press.10.1093/ajcn/55.1.299s1728844]Search in Google Scholar
[Coulombe J.J., Favreau L. (1963). A new simple semimicro method for colorimetric determination of urea. Clin. Chem., 9:102-108.10.1093/clinchem/9.1.102]Search in Google Scholar
[Dawood M.A.O., El-Dakar A., Mohsen M., Abdelraouf E., Koshio S., Ishikawa M., Yokoyama S. (2014). Effects of using exogenous digestive enzymes or natural enhancer mixture on growth, feed utilization, and body composition of Rabbitfish, Siganus rivulatus. Journal of Agricultural Science and Technology. B 4.]Search in Google Scholar
[Dawood M.A.O., Eweedah N.M., Khalafalla M.M., Khalid A. (2020a). Evaluation of fermented date palm seed meal with Aspergillus oryzae on the growth, digestion capacity and immune response of Nile tilapia (Oreochromis niloticus). Aquacult. Nutr. https://doi.org/10.1111/anu.1304210.1111/anu.13042]Search in Google Scholar
[Dawood M.A.O., Eweedah N.M., Moustafa E.M., El-Sharawy M.E., Soliman A.A., Amer A.A., Atia M.H. (2020b). Copper nanoparticles mitigate the growth, immunity, and oxidation resistance in common carp (Cyprinus carpio). Biol. Trace Elem. Res. https://doi.org/10.1007/s12011-020-02068-010.1007/s12011-020-02068-032026341]Search in Google Scholar
[Dawood M.A.O., Magouz F.I., Mansour M., Saleh A.A., Asely A.M.E., Fadl S.E., Ahmed H.A., Al-Ghanim K.A., Mahboob S., Al-Misned F. (2020c). Evaluation of yeast fermented poultry byproduct meal in Nile tilapia (Oreochromis niloticus) feed: Effects on growth performance, digestive enzymes activity, innate immunity, and antioxidant capacity. Front. Vet. Sci. https://doi.org/10.3389/fvets.2019.0051610.3389/fvets.2019.00516699648732047756]Search in Google Scholar
[Dawood M.A.O., Moustafa E.M., Gewaily M.S., Abdo S.E., AbdEl-kader M.F., SaadAllah M.S., Hamouda A.H. (2020d). Ameliorative effects of Lactobacillus plantarum L-137 on Nile tilapia (Oreochromis niloticus) exposed to deltamethrin toxicity in rearing water. Aquat. Toxicol., 219:105377.10.1016/j.aquatox.2019.10537731838306]Search in Google Scholar
[Dawood M.A.O., Eweedah N.M., Moustafa E.M., Shahin M.G. (2019a). Synbiotic effects of Aspergillus oryzae and beta-glucan on growth and oxidative and immune responses of Nile tilapia, Oreochromis niloticus. Probiotics Antimicrob. Proteins. https://doi.org/10.1007/s12602-018-9513-910.1007/s12602-018-9513-930617951]Search in Google Scholar
[Dawood M.A.O., Eweedah N.M., Moustafa Moustafa E., Shahin M.G. (2019b). Effects of feeding regimen of dietary Aspergillus oryzae on the growth performance, intestinal morphometry and blood profile of Nile tilapia (Oreochromis niloticus). Aquacult. Nutr. 25: 1063-1072.10.1111/anu.12923]Search in Google Scholar
[Dawood M.A.O., Koshio S. (2016). Recent advances in the role of probiotics and prebiotics in carp aquaculture: A review. Aquaculture. 454:243-251.10.1016/j.aquaculture.2015.12.033]Search in Google Scholar
[Dawood M.A.O., Koshio S. (2019). Application of fermentation strategy in aquafeed for sustainable aquaculture. Rev. Aquacult. https://doi.org/10.1111/raq.1236810.1111/raq.12368]Search in Google Scholar
[Dawood M.A.O., Koshio S., Abdel-Daim M.M., Van Doan H. (2019c). Probiotic application for sustainable aquaculture. Rev. Aquacult., 11:907-924.10.1111/raq.12272]Search in Google Scholar
[Dawood M.A.O., Koshio S., Ishikawa M., El-Sabagh M., Esteban M.A., Zaineldin A.I. (2016a). Probiotics as an environment-friendly approach to enhance red sea bream, Pagrus major growth, immune response and oxidative status. Fish Shellfish Immunol., 57:170-178.10.1016/j.fsi.2016.08.03827542618]Search in Google Scholar
[Dawood M.A.O., Koshio S., Ishikawa M., Yokoyama S. (2016b). Immune responses and stress resistance in red sea bream, Pagrus major, after oral administration of heat-killed Lactobacillus plantarum and vitamin C. Fish Shellfish Immunol., 54:266-275.10.1016/j.fsi.2016.04.01727095173]Search in Google Scholar
[Dawson M.R., Alam M.S., Watanabe W.O., Carroll P.M., Seaton P.J. (2018). Evaluation of poultry by-product meal as an alternative to fish meal in the diet of juvenile Black sea bass reared in a recirculating aquaculture system. N. Am. J. Aquac., 80:74-87.10.1002/naaq.10009]Search in Google Scholar
[Doan H.V., Hoseinifar S.H., Sringarm K., Jaturasitha S., Khamlor T., Dawood M.A.O., Esteban M.Á., Soltani M., Musthafa M.S. (2019). Effects of elephant’s foot (Elephantopus scaber) extract on growth performance, immune response, and disease resistance of Nile tilapia (Oreochromis niloticus) fingerlings. Fish Shellfish Immunol., 93:328-335.10.1016/j.fsi.2019.07.061]Search in Google Scholar
[Dossou S., Koshio S., Ishikawa M., Yokoyama S., Dawood M.A.O., El Basuini M.F., El-Hais A.M., Olivier A. (2018a). Effect of partial replacement of fish meal by fermented rapeseed meal on growth, immune response and oxidative condition of red sea bream juvenile, Pagrus major. Aquaculture. 490:228-235.10.1016/j.aquaculture.2018.02.010]Search in Google Scholar
[Dossou S., Koshio S., Ishikawa M., Yokoyama S., Dawood M.A.O., El Basuini M.F., Olivier A., Zaineldin A.I. (2018b). Growth performance, blood health, antioxidant status and immune response in red sea bream (Pagrus major) fed Aspergillus oryzae fermented rapeseed meal (RMKoji). Fish Shellfish Immunol., 75:253-262.10.1016/j.fsi.2018.01.03229360542]Search in Google Scholar
[Dossou S., Koshio S., Ishikawa M., Yokoyama S., El Basuini M.F., Zaineldin A.I., Mzengereza K., Moss A., Dawood M.A.O. (2019). Effects of replacing fishmeal with fermented and non-fermented rapeseed meal on the growth, immune and antioxidant responses of red sea bream (Pagrus major). Aquacult. Nutr., 25:508-517.10.1111/anu.12876]Search in Google Scholar
[Doumas, B.T., Bayse, D.D., Carter, R.J., Peters, T., Schaffer, R., 1981. A candidate reference method for determination of total protein in serum. I. Development and validation. Clin. Chem., 27:1642-1650.10.1093/clinchem/27.10.1642]Search in Google Scholar
[Dumas B.T., Biggs H.G. (1972). Standard Methods of Clinical Chemistry. Ed., Academic Press, New York.]Search in Google Scholar
[El-Boshy M.E., Ahmed M., AbdelHamid F.M., Gadalla H.A. (2010). Immunomodulatory effect of dietary Saccharomyces cerevisiae, β-glucan and laminaran in mercuric chloride treated Nile tilapia (Oreochromis niloticus) and experimentally infected with Aeromonas hydrophila. Fish Shellfish Immunol., 28:802-808.10.1016/j.fsi.2010.01.017]Search in Google Scholar
[El-Sayed A.F. (1998). Total replacement of fish meal with animal protein sources in Nile tilapia, Oreochromis niloticus (L.), feeds. Aquacult. Res., 29:275-280.10.1046/j.1365-2109.1998.00199.x]Search in Google Scholar
[Engstad R.E., Robertsen B.r. (1993). Recognition of yeast cell wall glucan by Atlantic salmon (Salmo salar L.) macrophages. Dev. Comp. Immunol., 17:319-330.10.1016/0145-305X(93)90004-A]Search in Google Scholar
[Firouzbakhsh F., Noori F., Khalesi M.K., Jani-Khalili K. (2011). Effects of a probiotic, protexin, on the growth performance and hematological parameters in the Oscar (Astronotus ocellatus) fingerlings. Fish Physiol. Biochem., 37:833-842.10.1007/s10695-011-9481-4]Search in Google Scholar
[Fowler L. (1991). Poultry by-product meal as a dietary protein source in fall chinook salmon diets. Aquaculture. 99:309-321.10.1016/0044-8486(91)90251-2]Search in Google Scholar
[Gümüş E., Aydin B. (2013). Effect of poultry by-product meal on growth performance and fatty acid composition of carp (Cyprinus carpio) fry. Turk. J. Fish. Aquat. Sc., 13:827-834.]Search in Google Scholar
[Gunben E.M., Senoo S., Yong A., Shapawi R. (2014). High potential of poultry by-product meal as a main protein source in the formulated feeds for a commonly cultured grouper in Malaysia (Epinephelus fuscoguttatus). Sains Malaysiana. 43:399-405.]Search in Google Scholar
[Harikrishnan R., Kim J.-S., Kim M.-C., Balasundaram C., Heo M.-S. (2011). Prunella vulgaris enhances the non-specific immune response and disease resistance of Paralichthys olivaceus against Uronema marinum. Aquaculture. 318:61-66.10.1016/j.aquaculture.2011.05.020]Search in Google Scholar
[Heinegård D., Tiderström G. (1973). Determination of serum creatinine by a direct colorimetric method. Clinica Chimica Acta. 43:305-310.10.1016/0009-8981(73)90466-X]Search in Google Scholar
[Hekmatpour F., Ghafle Marmmazi J., Zakeri M., Mousavi S.M. (2018). Potential of poultry byproduct meal as a main protein source in diets formulated for juvenile sobaity (Sparidentex hasta). Iran. J. Fish. Sci. 18(4):873-890.]Search in Google Scholar
[Hernández C., Olvera-Novoa M., Hardy R., Hermosillo A., Reyes C., González B.J. (2010). Complete replacement of fish meal by porcine and poultry by-product meals in practical diets for fingerling Nile tilapia Oreochromis niloticus: digestibility and growth performance. Aquacult. Nutr., 16:44-53.10.1111/j.1365-2095.2008.00639.x]Search in Google Scholar
[Hill J.C., Alam M.S., Watanabe W.O., Carroll P.M., Seaton P.J., Bourdelais A.J. (2019). Replacement of menhaden fish meal by poultry by-product meal in the diet of juvenile red porgy. N. Am. J. Aquacult., 81:81-93.10.1002/naaq.10074]Search in Google Scholar
[Hong K.-J., Lee C.-H., Kim S.W. (2004). Aspergillus oryzae GB-107 fermentation improves nutritional quality of food soybeans and feed soybean meals. J. Med. Food., 7:430-435.10.1089/jmf.2004.7.430]Search in Google Scholar
[Houston A. (1990). Blood and circulation/Methods for fish biology. NY.: Amer. Fish. Society. Irianto A., Austin B. (2002). Use of probiotics to control furunculosis in rainbow trout, Oncorhynchus mykiss (Walbaum). J. Fish Dis., 25:333-342.10.1046/j.1365-2761.2002.00375.x]Search in Google Scholar
[Jagruthi C., Yogeshwari G., Anbazahan S.M., Mari L.S.S., Arockiaraj J., Mariappan P., Sudhakar G.R.L., Balasundaram C., Harikrishnan R. (2014). Effect of dietary astaxanthin against Aeromonas hydrophila infection in common carp, Cyprinus carpio. Fish Shellfish Immunol., 41:674-680.10.1016/j.fsi.2014.10.010]Search in Google Scholar
[Jain N.C. (1986). Schalm’s veterinary hematology. Lea & Febiger, Philadelphia: 21-62.]Search in Google Scholar
[Jannathulla R., Dayal J.S., Vasanthakumar D., Ambasankar K., Panigrahi A., Muralidhar M. (2019). Apparent digestibility coefficients of fungal fermented plant proteins in two different penaeid shrimps—A comparative study. Aquacult. Res., 50:1491-1500.10.1111/are.14024]Search in Google Scholar
[Jiang C. (1982). Activity measuring for implemental enzyme. Science and Technology Press, Shanghai.]Search in Google Scholar
[Jin Z. (1995). The evaluation principle and method of functional food. Beijing: Beijing Publishers.]Search in Google Scholar
[Junqueira L.C.U., Carneiro J. (2005). Basic histology: text & atlas. McGraw-Hill Professional. Karapanagiotidis I.T., Psofakis P., Mente E., Malandrakis E., Golomazou E.J. (2019). Effect of fishmeal replacement by poultry by-product meal on growth performance, proximate composition, digestive enzyme activity, haematological parameters and gene expression of gilthead seabream (Sparus aurata). Aquacult. Nutr., 25:3-14.10.1111/anu.12824]Search in Google Scholar
[Kaviraj A., Mondal K., Mukhopadhyay P.K., Turchini G.M. (2013). Impact of fermented mulberry leaf and fish offal in diet formulation of Indian major carp (Labeo rohita) Proceedings of the Zoological Society. Springer, 64-73.10.1007/s12595-012-0052-1]Search in Google Scholar
[Kawahara E., Ueda T., Nomura S. (1991). In vitro phagocytic activity of white-spotted char blood cells after injection with Aeromonas salmonicida extracellular products. Fish Pathol., 26:213-214.10.3147/jsfp.26.213]Search in Google Scholar
[Kim S.-S., Galaz G.B., Pham M.A., Jang J.-W., Oh D.-H., Yeo I.-K., Lee K.-J. (2009). Effects of dietary supplementation of a meju, fermented soybean meal, and Aspergillus oryzae for juvenile parrot fish (Oplegnathus fasciatus). Asian-Australas J. Anim. Sci., 22:849-856.10.5713/ajas.2009.80648]Search in Google Scholar
[Kureshy N., Davis D.A., Arnold C. (2000). Partial replacement of fish meal with meat-and-bone meal, flash-dried poultry by-product meal, and enzyme-digested poultry by-product meal in practical diets for juvenile red drum. N. Am. J. Aquac., 62:266-272.10.1577/1548-8454(2000)062<0266:PROFMW>2.0.CO;2]Search in Google Scholar
[Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193:265-275.10.1016/S0021-9258(19)52451-6]Search in Google Scholar
[Lucky Z. (1977). Methods for the diagnosis of fish diseases, Amerind. publishing Co. PV T. Ltd., New Delhi, Bombay, India.]Search in Google Scholar
[Mehana E., Rahmani A., Aly S. (2015). Immunostimulants and Fish Culture: An Overview. Annu. Res. Rev. Biol., 5 (6):477-489.10.9734/ARRB/2015/9558]Search in Google Scholar
[Mello H.d., Moraes J., Niza I.G., Moraes F.R.d., Ozório R., Shimada M.T., Engracia F., Claudiano G. (2013). Efeitos benéficos de probióticos no intestino de juvenis de Tilápia-do-Nilo. Pesquisa Veterinária Brasileira, 724-730.10.1590/S0100-736X2013000600006]Search in Google Scholar
[Mondal K. (2014). Nutritional evaluation of fermented poultry feather feal in the formulated diets of fingerlings of Catla catla (Hamilton). Electronic Journal of Biology. 10:118-124.]Search in Google Scholar
[Moss A.S., Koshio S., Ishikawa M., Yokoyama S., Nhu T.H., Dawood M.A.O., Wang W. (2018). Replacement of squid and krill meal by snail meal (Buccinum striatissimum) in practical diets for juvenile of kuruma shrimp (Marsupenaeus japonicus). Aquacult. Res., 49:3097-3106.10.1111/are.13772]Search in Google Scholar
[Nayak S. (2010). Probiotics and immunity: a fish perspective. Fish Shellfish Immunol., 29:2-14.10.1016/j.fsi.2010.02.017]Search in Google Scholar
[Nengas I., Alexis M.N., Davies S.J. (1999). High inclusion levels of poultry meals and related byproducts in diets for gilthead seabream Sparus aurata L. Aquaculture. 179:13-23.10.1016/S0044-8486(99)00148-9]Search in Google Scholar
[Noga E. (1996). Fish Disease. Diagnosis and Treatment. St. Louis, Missouri: Mosby-Year Book. Inc.]Search in Google Scholar
[Ortuño J., Cuesta A., Rodrıguez A., Esteban M.A., Meseguer J. (2002). Oral administration of yeast, Saccharomyces cerevisiae, enhances the cellular innate immune response of gilthead seabream (Sparus aurata L.). Vet. Immunol. Immunopathol., 85:41-50.10.1016/S0165-2427(01)00406-8]Search in Google Scholar
[Panigrahi A., Kiron V., Satoh S., Hirono I., Kobayashi T., Sugita H., Puangkaew J., Aoki T. (2007). Immune modulation and expression of cytokine genes in rainbow trout Oncorhynchus mykiss upon probiotic feeding. Dev. Comp. Immunol., 31:372-382.10.1016/j.dci.2006.07.004]Search in Google Scholar
[Parés-Sierra G., Durazo E., Ponce M.A., Badillo D., Correa-Reyes G., Viana M.T. (2014). Partial to total replacement of fishmeal by poultry by-product meal in diets for juvenile rainbow trout (Oncorhynchus mykiss) and their effect on fatty acids from muscle tissue and the time required to retrieve the effect. Aquacult. Res., 45:1459-1469.10.1111/are.12092]Search in Google Scholar
[Parry J., Richard M., Chandan R.C., Shahani K.M. (1965). A rapid and sensitive assay of muramidase. Proceedings of the Society for Experimental Biology and Medicine 119, 384-386.10.3181/00379727-119-3018814328897]Search in Google Scholar
[Peppler, H., 1982. Yeast extracts. Economic Microbiology ed. London: Academic Press.]Search in Google Scholar
[Pirarat N., Boonananthanasarn S., Krongpong L., Katagiri T., Maita M. (2015). Effect of activated charcoal-supplemented diet on growth performance and intestinal morphology of Nile tilapia (Oreochromis niloticus). THAI J. Vet. Med., 45:113-119.]Search in Google Scholar
[Plaipetch P., Yakupitiyage A. (2014). Effect of replacing soybean meal with yeast-fermented canola meal on growth and nutrient retention of Nile tilapia, Oreochromis niloticus (Linnaeus 1758). Aquacult. Res., 45:1744-1753.10.1111/are.12119]Search in Google Scholar
[Ran C., Huang L., Liu Z., Xu L., Yang Y., Tacon P., Auclair E., Zhou Z. (2015). A comparison of the beneficial effects of live and heat-inactivated baker’s yeast on Nile tilapia: suggestions on the role and function of the secretory metabolites released from the yeast. PloS one 10, e0145448.10.1371/journal.pone.0145448469059026696403]Search in Google Scholar
[Rašković B.S., Stanković M.B., Marković Z.Z., Poleksić V.D. (2011). Histological methods in the assessment of different feed effects on liver and intestine of fish. Journal of Agricultural Sciences. 56:87-100.10.2298/JAS1101087R]Search in Google Scholar
[Reitman S., Frankel S. (1957). A Colorimetric Method for the Determination of Serum Glutamic Oxalacetic and Glutamic Pyruvic Transaminases. Am. J. Clin. Pathol., 28:56-63.10.1093/ajcp/28.1.56]Search in Google Scholar
[Saeidi asl M.R., Adel M., Caipang C.M.A., Dawood M.A.O. (2017). Immunological responses and disease resistance of rainbow trout (Oncorhynchus mykiss) juveniles following dietary administration of stinging nettle (Urtica dioica). Fish Shellfish Immunol., 71:230-238.10.1016/j.fsi.2017.10.016]Search in Google Scholar
[Samaddar A., Kaviraj A., Saha S. (2015). Utilization of fermented animal by-product blend as fishmeal replacer in the diet of Labeo rohita. Aquacult. Rep., 1:28-36.10.1016/j.aqrep.2015.03.004]Search in Google Scholar
[Saurabh S., Sahoo P. (2008). Lysozyme: an important defence molecule of fish innate immune system. Aquacult. Res., 39:223-239.10.1111/j.1365-2109.2007.01883.x]Search in Google Scholar
[Schwarz K., Furuya W., Natali M., Michelato M., Gualdezi M. (2010). Mannanoligosaccharides in diets for Nile tilapia, juveniles. Acta Sci. Anim. Sci., 32:197-203.10.4025/actascianimsci.v32i2.7724]Search in Google Scholar
[Steffens W. (1994). Replacing fish meal with poultry by-product meal in diets for rainbow trout, Oncorhynchus mykiss. Aquaculture. 124:27-34.10.1016/0044-8486(94)90351-4]Search in Google Scholar
[Takagi S., Shimeno S., Hosokawa H., Ukawa M. (2000). Replacement of fish meal by combined inclusion of alternative protein sources in a diet for yearling red sea bream, Pagrus major. Aquac. Res., 48:545-552.]Search in Google Scholar
[Tellez-Bañuelos M.C., Santerre A., Casas-Solis J., Bravo-Cuellar A., Zaitseva G. (2009). Oxidative stress in macrophages from spleen of Nile tilapia (Oreochromis niloticus) exposed to sublethal concentration of endosulfan. Fish Shellfish Immunol., 27:105-111.10.1016/j.fsi.2008.11.002]Search in Google Scholar
[Trinder P. (1969). Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann. Clin. Biochem., 6:24-27.10.1177/000456326900600108]Search in Google Scholar
[Upadhaya S.D., Kim I.H. (2015). Ileal digestibility of nutrients and amino acids in unfermented, fermented soybean meal and canola meal for weaning pigs. Anim. Sci. J., 86:408-414.10.1111/asj.12305]Search in Google Scholar
[Wang Y., Wang F., Ji W.X., Han H., Li P. (2015). Optimizing dietary protein sources for Japanese sea bass (Lateolabrax japonicus) with an emphasis on using poultry by-product meal to substitute fish meal. Aquacult. Res., 46:874-883.10.1111/are.12242]Search in Google Scholar
[Webster C.D., Tiu L.G., Morgan A.M., Gannam A. (1999). Effect of partial and total replacement of fish meal on growth and body composition of sunshine bass Morone chrysops× M. saxatilis fed practical diets. J. World Aqualt. Soc., 30:443-453.10.1111/j.1749-7345.1999.tb00992.x]Search in Google Scholar
[Worthington V. (1993). Worthington enzyme manual: enzymes and related biochemicals worthingthon chemical. New Jersey. p 399.]Search in Google Scholar
[Yang Y., Xie S., Cui Y., Zhu X., Lei W., Yang Y. (2006). Partial and total replacement of fishmeal with poultry by-product meal in diets for gibel carp, Carassius auratus gibelio Bloch. Aquacult. Res., 37:40-48.10.1111/j.1365-2109.2005.01391.x]Search in Google Scholar
[Yu L., Wu F., Liu W., Tian J., Lu X., Wen H. (2017). Semisynthetic ferulic acid derivative: an efficient feed additive for Genetically Improved Farmed Tilapia (Oreochromis niloticus). Aquacult. Res., 48:5017-5028.10.1111/are.13319]Search in Google Scholar
[Zhou Q.-C., Zhao J., Li P., Wang H.-L., Wang L.-G. (2011). Evaluation of poultry by-product meal in commercial diets for juvenile cobia (Rachycentron canadum). Aquaculture. 322:122-127.10.1016/j.aquaculture.2011.09.042]Search in Google Scholar