[
Acquah, K. and Chen, Y. (2021). Discrete element modelling of soil compaction of a press-wheel. AgriEngineering, 3(2), 278 – 93. DOI:10.3390/agriengineering3020019.
]Apri DOISearch in Google Scholar
[
Alameda, D. and Villar, R. (2012). Linking root traits to plant physiology and growth in FraxinusangustifoliaVahl. seedlings under soil compaction conditions. Environmental and Experimental Botany, 79, 49 ‒ 57. DOI:10.1016/j.envexpbot.2012.01.004.
]Apri DOISearch in Google Scholar
[
Ali, A.M., Ibrahim, S.M., and Singh, B. (2020). Wheat grain yield and nitrogen uptake prediction using at Leaf and GreenSeeker portable optical sensors at jointing growth stage. Information Processing in Agriculture, 7(3), 375 ‒ 83. DOI:10.1016/j.inpa.2019.09.008.
]Apri DOISearch in Google Scholar
[
Arvidsson, J. (1999). Nutrient uptake and growth of barley as affected by soil compaction. Plant and Soil, 208(1), 9 ‒ 19. DOI:10.1023/A:1004484518652.
]Apri DOISearch in Google Scholar
[
Berti, M.T., Johnson, B.L., and Henson, R.A. (2008). Seeding depth and soil packing affect pure live seed emergence of cuphea. Industrial Crops and Products, 27(3), 272 − 78. DOI:10.1016%2Fj.indcrop.2007.10.004.
]Apri DOISearch in Google Scholar
[
Beutler, A.N., Centurion, J.F., and da Silva, A.P. (2005). Soil resistance to penetration and least limiting water range for soybean yield in a haplustox from Brazil. Brazilian. Archives of Biology and Technology, 48(6), 863 ‒ 71. DOI:10.1590/S1516-89132005000800002.
]Apri DOISearch in Google Scholar
[
Bouaziz, A. and Bruckler, L. (1989). Modelling seedling growth and emergence. I. Seedling growth affected by water potential. Soil Science Society of America Journal, 53(6), 1832 ‒ 38. DOI:10.2136/sssaj1989.03615995005300060036x.
]Apri DOISearch in Google Scholar
[
Cornish, P.S., So, H.B., and McWilliam, J.R. (1984). Effects of soil bulk density and water regimen on root growth and uptake of phosphorus by ryegrass. Australian Journal of Agricultural Research, 35(5), 631 ‒ 44. DOI:10.1071/AR9840631.
]Apri DOISearch in Google Scholar
[
Czyż, E.A. (2004). Effects of traffic on soil aeration, bulk density and growth of spring barley. Soil and Tillage Research, 79(2), 153 – 66. DOI:10.1016/j.still.2004.07.004.
]Apri DOISearch in Google Scholar
[
Czyż, E. and Tomaszewska, J. (1993). The effect of different compaction of sandy and loamy soils on their physical properties and the spring barley yield. Polish Journal of Soil Science, 26(1), 11 ‒ 17.
]Search in Google Scholar
[
Czyż, E. and Kukier, U. (1997). The effect of soil bulk density and water content on soil aeration, nitrogen forms and barley yield. Fragmenta Agronomica, 2, 163 ‒ 166.
]Search in Google Scholar
[
De Freitas, P.L., Zobel, R.W., and Snyder, V.A. (1996). A method for studying the effects of soil aggregate size and density. Soil Science Society of America Journal, 60(1), 288 – 90. DOI:10.2136/sssaj1996.03615995006000010044x.
]Apri DOISearch in Google Scholar
[
Durant, M.J., Dunning, R.A., Jaggard, K.W., Bugg, R.B., and Scott, R.K. (1988). A census of seedling establishment in sugar-beet crops. Annual of Applied Biology, 113(2), 327 – 45. DOI:10.1111/j.1744-7348.1988.tb03310.x.
]Apri DOISearch in Google Scholar
[
Edalat, M., Naderi, R., and Egan, T.P. (2019). Corn nitrogen management using NDVI and SPAD sensor-based data under conventional vs. reduced tillage systems. Journal of Plant Nutrition, 42(18), 2310 ‒ 22. DOI:10.1080/01904167.2019.1648686.
]Apri DOISearch in Google Scholar
[
Gallardo, I.T. (1992). Using infrared canopy temperature and leaf water potential for irrigation scheduling in peppermint. MSc diss. Oregon State University. 84p.
]Search in Google Scholar
[
Goldsmith, W., Silva, M., and Fischenich, C. (2001). Determining optimal degree of soil compaction for balancing mechanical stability and plant growth capacity. Vicksburg: Army Engineer Research and Development Center, 9p.
]Search in Google Scholar
[
Gulidova, V., Kravchenko, V., and Zakharov, V. (2020). Optimization of the soil agrophysical properties for spring rape on Leached Black Soil. Amazonia Investiga, 9(29), 63 ‒ 68. DOI:10.34069/AI/2020.29.05.8.
]Apri DOISearch in Google Scholar
[
Guru, T., Thatikunta, R., and Rao, P.R. (2015). Physiological characterization of rice (Oryza sativa L.) genotypes during early vegetative stage. Research Journal of Agricultural Sciences, 6(6), 1371 ‒ 74.
]Search in Google Scholar
[
Gürsoy, S. and Türk, Z. (2019). Effects of land rolling on soil properties and plant growth in chickpea production. Soil and Tillage Research, 195(3), 104425. DOI:10.1016/j.still.2019.104425.
]Apri DOISearch in Google Scholar
[
Håkansson, I., Myrbeck, Å., and Etana, A. (2002). A review of research on seedbed preparation for small grain in Sweden. Soil and Tillage Research, 64(1 – 2), 23 – 40. DOI:10.1016/S0167-1987(01)00255-0.
]Apri DOISearch in Google Scholar
[
Hill, R.L. (1990). Long-term conventional and no-till effects on selected soil physical properties. Soil Science Society of America Journal, 54(1), 161 ‒ 66. DOI:10.2136/sssaj1990.03615995005400010025x.
]Apri DOISearch in Google Scholar
[
Ishaq, M., Ibrahim, M., Hassan, A., Saeed, M., and Lal, R. (2001). Subsoil compaction effects on crops in Punjab, Pakistan. II. Root growth and nutrient uptake of wheat and sorghum. Soil and Tillage Research, 60(3 ‒ 4), 153 ‒ 61. DOI:10.1016/S0167-1987(01)00177-5.
]Apri DOISearch in Google Scholar
[
Jackson, R.D. (1982). Canopy temperature and crop water stress. Advances in Irrigation, 1, 43 ‒ 85. DOI:10.1016/B978-0-12-024301-3.50009-5.
]Apri DOISearch in Google Scholar
[
Jackson, R.D., Kustas, W.P., and Choudhury, B.J. (1988). A re-examination of the crop water stress index. Irrigation Science, 9, 309 – 17. DOI:10.1007/BF00296705.
]Apri DOISearch in Google Scholar
[
Jamali, H., Nachimuthu, G., Palmer, B., Hodgson, D., Hundt, A., Nunn, C., and Braunack, M. (2021). Soil compaction in a new light: Know the cost of doing nothing – A cotton case study. Soil and Tillage Research, 213, 105158. DOI:10.1016/j.still.2021.105158.
]Apri DOISearch in Google Scholar
[
Jia, H., Wang, W., Luo, X., Zheng, J., Guo, M., and Zhuang, J. (2016). Effects of profiling elastic press roller on seedbed properties and soybean emergence under double row ridge cultivation. Soil and Tillage Research, 162, 34 ‒ 40. DOI:10.1016/j.still.2016.04.011.
]Apri DOISearch in Google Scholar
[
Kooistra, M.J., Schoonderbeek, D., Boone, F.R., Veen, B.W., and Van Noordwijk, M. (1992). Root-soil contact of maize as measured by thin-section technique. 2. Effects of soil compaction. Plant and Soil, 139(1), 119 – 29. DOI:10.1007/BF00012849.
]Apri DOISearch in Google Scholar
[
Kuzucu, M. (2017). Effects of water harvesting techniques and using humic acid on soil moisture, plant evaporation, growth and yield in pistachio orchards in southeastern of Turkey. Fresenius Environmental Bulletin, 26(12), 7521 ‒ 7528.
]Search in Google Scholar
[
Kuzucu, M. (2019). Effects of organic fertilizer application on yield, soil organic matter and porosity on kilis oil olive variety under arid conditions. Eurasian Journal of Forest Science, 7(1), 77 ‒ 83. DOI:10.31195/ejejfs.511098.
]Apri DOISearch in Google Scholar
[
Leão, T.P., da Silva, A.P., Macedo, M.C.M., Imhoff, S., and Euclides, V.P.B. (2006). Least limiting water range: a potential indicator of changes in near-surface soil physical after the conversion of Brazilian Savanna into pasture. Soil and Tillage Research, 88(1 ‒ 2), 279 ‒ 85. DOI:10.1016%2Fj.still.2005.06.014.
]Apri DOISearch in Google Scholar
[
Lipiec, J. and Simota, C. (1994). Role of soil climate factors in influencing crop responses to soil compaction in Central and Eastern Europe. In Soane, B.D. and van Ouwerkerk, C. (Eds.) Soil compaction and crop production, Amsterdam: Elsevier Science, pp. 365 – 390.10.1016/B978-0-444-88286-8.50024-6
]Search in Google Scholar
[
Lipiec, J. and Stêpniewski, W. (1995). Effects of soil compaction and tillage systems on uptake and losses of nutrients. Soil and Tillage Research, 35(1 ‒ 2), 37 – 52. DOI:10.1016/0167-1987(95)00474-7.
]Apri DOISearch in Google Scholar
[
Mourad, R., Jaafar, H., Anderson, M., and Gao, F. (2020). Assessment of leaf area index models using harmonized landsat and sentinel-2 surface reflectance data over a semi-arid irrigated landscape. Remote Sensing, 12(19), 3121. DOI:10.3390/rs12193121.
]Apri DOISearch in Google Scholar
[
Nanda, M.K., Giri, U., and Bera, N. 2018. Canopy temperature-based water stress ındices: Potential and limitations. In Bal, S.K., Mukherjee, J., Choudhury, B.U., Dhawan, A.K. (Eds.) Advances in crop environment interaction, Singapore: Springer, pp. 365 ‒ 389.
]Search in Google Scholar
[
Nawaz, M.F., Bourrie, G., and Trolard, F. (2013). Soil compaction impact and modelling. A review. Agronomy for Sustainable Development, 33(2), 291 ‒ 309. DOI:10.1007/s13593-011-0071-8.
]Apri DOISearch in Google Scholar
[
Otto, R., Silva, A.P., Franco, H.C.J., Oliveira, E.C.A., and Trivelin, P.C.O. (2011). High soil penetration resistance reduces sugarcane root system development. Soil and Tillage Research, 117, 201 ‒ 10. DOI:10.1016/j.still.2011.10.005.
]Apri DOISearch in Google Scholar
[
Oussible, M., Crookston, P.K., and Larson, W.E. (1992). Subsurface compaction reduces root and shoot growth and grain yield of wheat. Agronomy Journal, 84(1), 34 ‒ 38. DOI:10.2134/agronj1992.00021962008400010008x.
]Apri DOISearch in Google Scholar
[
Reichert, J.M., Reinert, D.J., and Braida, J.A. (2003). Soil quality and sustainability of agricultural systems (in Portuguese). Science Environment, 27, 29 – 48.
]Search in Google Scholar
[
Reynolds, M.P., Singh, R.P., Ibrahim, A., Ageeb, O.A.A., Larque Saavedra, A., and Quick, J. S. (1998). Evaluating physiological traits to complement empirical selection for wheat in warm environments. Euphytica, 100(1 ‒ 3), 84 ‒ 95. DOI:10.1023/A:1018355906553.
]Apri DOISearch in Google Scholar
[
Sarto, M.V.M., Bassegio, D., Rosolem, C.A., and Sarto, J.R.W. (2018). Safflower root and shoot growth affected by soil compaction. Bragantia, Campinas, 77(2), 348 ‒ 55. DOI:10.1590/1678-4499.2017191.
]Apri DOISearch in Google Scholar
[
Sivarajan, S., Maharlooeia, M., Bajwaa, S.G., and Nowatzkia, J. (2018). Impact of soil compaction due to wheel traffic on corn and soybean growth, development and yield. Soil and Tillage Research, 175(1), 234 ‒ 43. DOI:10.1016/j.still.2017.09.001.
]Apri DOISearch in Google Scholar
[
Stirzaker, R.J., Passioura, J.B., and Wilms, Y. (1996). Soil structure and plant growth: Impact of bulk density and biopores. Plant and Soil, 185, 151 ‒ 62. DOI:10.1007/BF02257571.
]Apri DOISearch in Google Scholar
[
Tian, Y.C., Yao, X.,Yang, J., Cao, W.X., Hannaway, D.B., and Zhu, Y. (2011). Assessing newly developed and published vegetation indices for estimating rice leaf nitrogen concentration with ground—And space-based hyperspectral reflectance. Field Crops Research, 120(2), 299 ‒ 310. DOI:10.1016/j.fcr.2010.11.002.
]Apri DOISearch in Google Scholar
[
Tong, J., Zhang, Q., Guo, L., Chang, Y., Guo, Y., Zhu, F., Chen, D., and Liu, X. (2015). Compaction performance of biomimetic press roller to soil. Journal of Bionic Engineering, 12(1), 152 ‒ 59. DOI:10.1016/S1672-6529(14)60109-8.
]Apri DOISearch in Google Scholar
[
Tormena, C.A., da Silva, A.P., and Libardi, P.L. (1999). Soil physical quality of a Brazilian Oxisol under two tillage systems using the least limiting water range approach. Soil and Tillage Research, 52, 223 ‒ 32. DOI: 10.1016/S0167-1987(99)00086-0.
]Apri DOISearch in Google Scholar
[
Voorhees, W.B., Evans, S.D., and Warnes, D.D. (1985) Effect of preplant wheel traffic on soil compaction, water use, and growth of spring wheat. Soil Science Society of America Journal, 49, 215 ‒ 220. DOI:10.2136/sssaj1985.03615995004900010043x.
]Apri DOISearch in Google Scholar
[
Wu, D., Andales, A.A.,Yang, H., Sun, Q., Chen, S., Guo, X., Li, D., and Du,T. (2021). Linking crop water productivity to soıl physical, chemical and microbial properties. Frontiers of Agricultural Science and Engineering, 8(4), 545 ‒ 58. DOI:10.15302/J-FASE-2020349.
]Apri DOISearch in Google Scholar
[
Zhang, J., Liu, X., Liang, Y., Cao, Q., Tian, Y., Zhu, Y., Cao, W., and Liu, X. (2019). Using a portable active sensor to monitor growth parameters and predict grain yield of winter wheat. Sensors, 19(5), 1108. DOI:10.3390/s19051108.642746530841552
]Apri DOISearch in Google Scholar