1. bookVolume 68 (2022): Edizione 2 (July 2022)
Dettagli della rivista
Prima pubblicazione
06 Jun 2011
Frequenza di pubblicazione
4 volte all'anno
Accesso libero

Chitosan and Trichoderma harzianum a new Challenge for managing Fusarium crown and root rot in asparagus plant

Pubblicato online: 16 Dec 2022
Volume & Edizione: Volume 68 (2022) - Edizione 2 (July 2022)
Pagine: 75 - 86
Ricevuto: 31 Aug 2022
Accettato: 11 Nov 2022
Dettagli della rivista
Prima pubblicazione
06 Jun 2011
Frequenza di pubblicazione
4 volte all'anno

Alelign, S. (2021). Evaluation of the efficacy of Trichoderma and Pseudomonas species against bacterial wilt Ralstonia isolates of tomato (Lycopersicum species). African Journal of Microbiology Research, 15(5), 262 ‒ 271. DOI:10.5897/AJMR2021.9523. Apri DOISearch in Google Scholar

AL-surhanee, A.A. (2022). Protective role of antifusarial eco-friendly agents (Trichoderma and salicylic acid) to improve resistance performance of tomato plants. Saudi Journal of Biological Sciences, 29(4), 2933 ‒ 2941. DOI:10.1016/j.sjbs.2022.01.020.907305535531256 Apri DOISearch in Google Scholar

Badawy, M.E.I. and Rabea, E.I. (2011). Biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection. International Journal of Carbohydrate Chemistry, 2011(29), 1 ‒ 29. DOI:10.1155/2011/460381. Apri DOISearch in Google Scholar

Berkow, E.L., Lockhart, S.R., and Ostrosky-Zeichner, L. (2020). Antifungal susceptibility testing: current approaches. Clinical Microbiology Reviews, 33(3), 1 ‒ 30. DOI:10.1128/Cmr.00069-19. Apri DOISearch in Google Scholar

Bochicchio, R., Labella, R., Vitti, A., Nuzzaci, M., Logozzo, G., and Amato, M. (2022). Root morphology, allometric relations and rhizosheath of ancient and modern tetraploid wheats (Triticum durum Desf.) in response to inoculation with Trichoderma harzianum T-22. Plants, 11(2), 1 ‒ 14. DOI:10.3390/plants11020159.877991935050047 Apri DOISearch in Google Scholar

Brizuela, A.M., De la Lastra, E., Marín-Guirao, J.I., Gálvez, L., De Cara-García, M., Capote, N., and Palmero, D. (2020). Fusarium consortium populations associated with asparagus crop in Spain and their role on field decline syndrome. Journal of Fungi, 6(4), 1 ‒ 23. DOI:10.3390/jof6040336.776179233291584 Apri DOISearch in Google Scholar

Carlucci, A., Raimondo, M.L., Colucci, D., and Lops, F. (2022). Streptomyces albidoflavus strain CARA17 as a biocontrol agent against fungal soil-borne pathogens of fennel plants. Plants, 11(11), 1 ‒ 12. DOI:10.3390/plants11111420.918260235684193 Apri DOISearch in Google Scholar

Chang, X., Yan, L., Naeem, M., Khaskheli, M.I., Zhang, H., Gong, G., Zhang, M., Song, C., Yang, W., Liu, T., and Chen, W. (2020). Maize/soybean relay strip intercropping reduces the occurrence of Fusarium root rot and changes the diversity of the pathogenic Fusarium species. Pathogens, 9(3), 1 ‒ 16. DOI:10.3390/pathogens9030211.715770032183013 Apri DOISearch in Google Scholar

Cohen, S.I. and Heald, F.D. (1941). Wilt and root rot of asparagus is caused by Fusarium oxysporum (Schlecht.). Plant Disease Reporter, 25(1), 503 ‒ 509. Search in Google Scholar

Corpas-Hervias, C., Melero-Vara, J.M., Molinero-Ruiz, M.L., Zurera-Muñoz, C., and Basallote-Ureba, M.J. (2006). Characterization of isolates of Fusarium spp. obtained from asparagus in Spain. Plant Disease, 90(11), 1441 ‒ 1451. DOI:10.1094/Pd-90-1441.30780912 Apri DOISearch in Google Scholar

De la Lastra, E., Marín-Guirao, J.I., López-Moreno, F.J., Soriano, T., de Cara-García, M., and Capote, N. (2021). Potential inoculum sources of Fusarium species involved in asparagus decline syndrome and evaluation of soil disinfestation methods by qPCR protocols. Pest Management Science, 77(10), 4749 ‒ 4757. DOI:10.1002/ps.6519.34145951 Apri DOISearch in Google Scholar

Deshaies, M., Lamari, N., Ng, C.K.Y., Ward, P., and Doohan, F.M. (2022). The impact of chitosan on the early metabolomic response of wheat to infection by Fusarium gram-inearum. BMC Plant Biology, 73(22), 1‒17. DOI:10.1186/s12870-022-03451-w.885783935183130 Apri DOISearch in Google Scholar

Du, S., Trivedi, P., Wei, Z., Feng, J., Hu, H., Bi, L., Huang, Q., and Liu, Y. (2022). The proportion of soil-borne fungal pathogens increases with elevated organic carbon in agricultural soils. mSystems, 7(2), 1 ‒ 12. DOI:10.1128/msystems.01337-21.904086435311561 Apri DOISearch in Google Scholar

Elmer, W.H. (2015). Management of Fusarium crown and root rot of asparagus. Crop Protection, 73(1), 2 ‒ 6. DOI:10.1016/j.cropro.2014.12.005. Apri DOISearch in Google Scholar

Farahani-Kofoet, R.D., Witzel, K., Graefe, J., Grosch, R., and Zrenner, R. (2020). Species-specific impact of Fusarium infection on the root and shoot characteristics of asparagus. Pathogens, 9(6), 1 ‒ 20. DOI:10.3390/pathogens9060509.735034432599821 Apri DOISearch in Google Scholar

Filyushin, M.A., Shagdarova, B.T., Shchennikova, A.V., Il’ina, A.V., Kochieva, E.Z., and Varlamov, V.P. (2022). Pretreatment with chitosan prevents Fusarium infection and induces the expression of chitinases and β-1,3-glucanases in garlic (Allium sativum L.). Horticulturae, 8(5), 1 ‒ 18. DOI:10.3390/horticulturae8050383. Apri DOISearch in Google Scholar

Gao, Y., Zhang, Y., Cheng, X., Zheng, Z., Wu, X., Dong, X., Hu, Y., and Wang, X. (2022). Agricultural jiaosu: An eco-friendly and cost-effective control strategy for suppressing Fusarium Root rot disease in Astragalus membranaceus. Frontiers in Microbiology, 13(1), 1‒ 15. DOI:10.3389/fmicb.2022.823704.900836035432283 Apri DOISearch in Google Scholar

Haque, S.I. and Matsubara, Y. (2018). Arbuscular-mycorrhiza-induced salt tolerance and resistance to Fusarium root rot in asparagus plants. Acta Horticulturae, 1227(1), 365 ‒ 372. DOI:10.17660/ActaHortic.2018.1227.45. Apri DOISearch in Google Scholar

Harman, G., Khadka, R., Doni, F., and Uphoff, N. (2021). Benefits to plant health and productivity from enhancing plant microbial symbionts. Frontiers in Plant Science, 11(1), 1‒21. DOI:10.3389/fpls.2020.610065.807247433912198 Apri DOISearch in Google Scholar

Hassan, E.O., Shoala, T., Attia, A.M.F., Badr, O.A.M., Mahmoud, S.Y.M., Farrag, E.S.H., and EL-Fiki, I.A.I. (2022). Chitosan and nano-chitosan for management of Harpophora maydis: Approaches for investigating antifungal activity, pathogenicity, maize-resistant lines, and molecular diagnosis of plant infection. Journal of Fungi, 8(5), 1 ‒ 16. DOI:10.3390/jof8050509.914470935628764 Apri DOISearch in Google Scholar

Hassan, O. and Chang, T. (2017). Chitosan for eco-friendly control of plant disease. Asian Journal of Plant Pathology, 11(2), 53 ‒ 70. DOI:10.3923/ajppaj.2017.53.70. Apri DOISearch in Google Scholar

Hermosa, R., Viterbo, A., Chet, I., and Monte, E. (2012). Plant-beneficial effects of Trichoderma and of its genes. Microbiology, 158(1), 17 – 25. DOI:10.1099/mic.0.052274-0.21998166 Apri DOISearch in Google Scholar

Hewedy, O.A., Abdel-Lateif, K.S., and Bakar, R.A. (2019). Genetic diversity and biocontrol efficacy of indigenous Trichoderma isolates against Fusarium wilt of pepper. Journal of Basic Microbiology, 60(2), 126 ‒ 135. DOI:10.1002/jobm.201900493.31840846 Apri DOISearch in Google Scholar

Kappel, L., Kosa, N., and Gruber, s. (2022). The multilateral efficacy of chitosan and Trichoderma on Sugar Beet. Journal of Fungi, 8(2), 1 ‒ 23. DOI:10.3390/jof8020137.887945835205892 Apri DOISearch in Google Scholar

Ke, Y., Ding, B., Zhang, M., Dong, T., Fu, Y., Lv, Q., Ding, W., and Wang, X. (2022). Study on inhibitory activity and mechanism of chitosan oligosaccharides on Aspergillus flavus and Aspergillus fumigatus. Carbohydrate Polymers, 275(1), 118673. DOI:10.1016/j.carbpol.2021.118673.34742409 Apri DOISearch in Google Scholar

Kumar, R., Duhan, J.S., Manuja, A., Kaur, P., Kumar, B., and Sadh, P.K. (2022). Toxicity assessment and control of early blight and stem rot of Solanum tuberosum L. by mancozeb-loaded chitosan-gum acacia nanocomposites. Journal of Xenobiotics, 12(2), 74 ‒ 90. DOI:10.3390/jox12020008.903620835466214 Apri DOISearch in Google Scholar

Lahlali, R., Ezrari, S., Radouane, N., Kenfaoui, J., Esmaeel, Q., El Hamss, H., Belabess, Z., and Barka, E.A. (2022). Biological control of plant pathogens: A global perspective. Microorganisms, 10(3), 1‒33. DOI:10.3390/microorganisms10030596.895128035336171 Apri DOISearch in Google Scholar

Lee, J.W., Lee, J.H., Yu, I.H., Gorinstein, S., Bae, J.H., and Ku, Y.G. (2014). Bioactive compounds, antioxidant and binding activities and spear yield of Asparagus officinalis L. Plant Foods for Human Nutrition, 69(2), 175 ‒ 181. DOI:10.1007/s11130-014-0418-9.24793354 Apri DOISearch in Google Scholar

Leslie, J.F. and Summerell, A.B. (2006). The Fusarium Laboratory Manual. UK: BlackWell Publishing Oxford, 388.10.1002/9780470278376 Search in Google Scholar

Li, Y., Sun, X., Bi, Y., Ge, Y., and Wang, Y. (2009). Antifungal activity of chitosan on Fusarium sulphureum in relation to dry rot of potato tuber. Agricultural Sciences in China, 8(5), 597 ‒ 604. DOI:10.1016/s1671-2927(08)60251-5. Apri DOISearch in Google Scholar

Mishra, P.K., Fox, R.T.V., and Culham, A. (2003). Development of a PCR-based assay for rapid and reliable identification of pathogenic Fusaria. FEMS Microbiology Letters, 218(2), 329 ‒ 332. DOI:10.1111/j.1574-6968.2003.tb11537.x.12586412 Apri DOISearch in Google Scholar

Mondani, L., Chiusa, G., and Battilani, P. (2021). Fungi associated with garlic during the cropping season, with focus on Fusarium proliferatum and F. oxysporum. Plant Health Progress, 22(1), 37 ‒ 46. DOI:10.1094/PhP-06-20-0054-rs. Apri DOISearch in Google Scholar

Mukherjee, P.K., Mendoza-Mendoza, A., Zeilinger, S., and Horwitz, B.A. (2022). Mycoparasitism as a mechanism of Trichoderma-mediated suppression of plant diseases. Fungal Biology Reviews, 39(1), 15 ‒ 33. DOI:10.1016/j.fbr.2021.11.004. Apri DOISearch in Google Scholar

Onaran, A., Bayar, Y., Karakurt, T., Tokatli, K., Bayram, M., and Yanar, Y. (2021). Antifungal activity of chitosan against soil-borne plant pathogens in cucumber and a molecular docking study. Journal of Taibah University for Science, 15(1), 852 ‒ 860. DOI:10.1080/16583655.2021.2006434. Apri DOISearch in Google Scholar

Orzali, L., Corsi, B., Forni, C., and Riccioni, L. (2017). Chitosan in agriculture: A new challenge for managing plant disease. in Shalaby, E.A. (ed.). Biological activities and application of marine polysaccharides. 1st ed., Croatia: InTech, Rijeka, 328p. Search in Google Scholar

Pedrero-Méndez, A., Insuasti, H.C., Neagu, T., Illescas, M., Rubio, M.B., Monte, E., and Hermosa, R. (2021). Why is the correct selection of Trichoderma strains important? The case of wheat endophytic strains of T. harzianum and T. simmonsii. Journal of Fungi, 7(12), 1 ‒ 21. DOI:10.3390/jof7121087.870489034947069 Apri DOISearch in Google Scholar

Qing, W., Jin-Hua, Z., Qian, W., Yang, N., and Li-Pu, G. (2015). Inhibitory effect of chitosan on growth of the fungal phytopathogen, Sclerotinia sclerotiorum, and sclerotinia rot of carrot. Journal of Integrative Agriculture, 14(4), 691 ‒ 697. DOI:10.1016/S2095-3119(14)60800-5. Apri DOISearch in Google Scholar

Reid, T.C., Hausbeck, M.K., and Kizilkaya, K. (2002). Use of fungicides and biological controls in the suppression of Fusarium crown and root rot of asparagus under greenhouse and growth chamber conditions. Plant Disease, 86(5), 493 ‒ 498. DOI:10.1094/Pdis.2002.86.5.493. Apri DOISearch in Google Scholar

Ruangsanka, S. (2014). Identification of phosphate-solubilizing fungi from the asparagus rhizosphere as antagonists of the root and crown rot pathogen Fusarium oxysporum. Science Asia, 40(1), 1 ‒ 16. DOI:10.2306/scienceasia1513-1874.2014.40.016. Apri DOISearch in Google Scholar

Shih, P., Liao, Y., Tseng, Y., Deng, F., and Lin, C. (2019). A potential antifungal effect of chitosan against Candida albicans is mediated via the inhibition of SAGA complex component expression and the subsequent alteration of cell surface integrity. Frontiers in Microbiology, 10(1), 1 ‒ 14. DOI:10.3389/fmicb.2019.00602.644370930972050 Apri DOISearch in Google Scholar

Singha, I.M., Kakoty, Y., Unni, B.G., Das, J., and Kalita, M.C. (2016). Identification and characterization of Fusarium sp. using ITS and RAPD causing fusarium wilt of tomato isolated from Assam, North East India. Journal of Genetic Engineering and Biotechnology, 14(1), 99 ‒ 105. DOI:10.1016/j.jgeb.2016.07.001.629988730647603 Apri DOISearch in Google Scholar

Stamford, T.C.M., Alcântara, S.R.C., Berger, L.R.R., Stamford, N.P., Silva, M.C.F., Borges, T.K.S., Laranjeiras, D., and Campos-Takaki, G.M. (2010). Antimicrobial activity of chitosan against Fusarium oxysporum f. sp. tracheiphilum. The 3t international conference on microorganisms in industry and environment, Lisbon: Scientific and industrial research to consumer product, pp. 12 ‒ 15. Search in Google Scholar

Stasinska-Jakubas, M. and Hawrylak-Nowak, B. (2022). Protective, biostimulating, and eliciting effects of chitosan and its derivatives on crop plants. Molecules, 27(9), 1 ‒ 17. DOI:10.3390/molecules27092801.910199835566152 Apri DOISearch in Google Scholar

Subramaniam, S., Zainudin, N.A.I.M., Aris, A., and Hasan, Z.A.E. (2022). Role of Trichoderma in plant growth promotion. In Gupta, V.K. and Tuohy, M.G. (Eds.). Fungal biology. 1st ed. USA: Springer, pp. 257 ‒ 280.10.1007/978-3-030-91650-3_9 Search in Google Scholar

Surono, and Narisawa, K. (2018). The inhibitory role of dark septate endophytic fungus Phialocephala fortinii against Fusarium disease on the Asparagus officinalis growth in organic source conditions. Biological Control, 121(1), 159 ‒ 167. DOI:10.1016/j.biocontrol.2018.02.017. Apri DOISearch in Google Scholar

Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725 ‒ 2729. DOI:10.1093/molbev/mst197.384031224132122 Apri DOISearch in Google Scholar

Tyskiewicz, R., Nowak, A., Ozimek, E., and Jaroszuk-Sciseł, J. (2022). Trichoderma: The current status of its application in agriculture for the biocontrol of fungal phytopathogens and stimulation of plant growth. International Journal of Molecular Sciences, 23(4), 1 ‒ 28. DOI:10.3390/ijms23042329.887598135216444 Apri DOISearch in Google Scholar

Viejobueno, J., Albornoz, P.L., Camacho, M., de los Santos, B., Martínez-Zamora, M.G., and Salazar, S.M. (2021). Protection of strawberry plants against charcoal rot disease (Macrophomina phaseolina) induced by Azospirillum brasilense. Agronomy, 11(2), 1‒12. DOI:10.3390/agronomy11020195. Apri DOISearch in Google Scholar

Vitti, A., Bevilacqua, V., Logozzo, G., Bochicchio, R., Amato, M., and Nuzzaci, M. (2022). Seed coating with Trichoderma harzianum T-22 of Italian durum wheat increases protection against Fusarium culmorum-induced crown rot. Agriculture, 12(5), 1 ‒ 12. DOI:10.3390/agriculture12050714. Apri DOISearch in Google Scholar

Wang, Q., Li, H., Lei, Y., Su, Y., and Long, Y. (2022). Chitosan as an adjuvant to improve isopyrazam azoxystrobin against leaf spot disease of kiwifruit and enhance its photosynthesis, quality, and amino acids. Agriculture, 12(3), 1 ‒ 13. DOI:10.3390/agriculture12030373. Apri DOISearch in Google Scholar

Xu, H., Yan, L., Zhang, M., Chang, X., Zhu, D., Wei, D., Naeem, M., Song, C., Wu, X., Liu, T., Chen, W., and Yang, W. (2022). Changes in the density and composition of rhizosphere pathogenic Fusarium and beneficial Trichoderma contributing to reduced root rot of intercropped soybean. Pathogens, 11(4), 1 ‒ 16. DOI:10.3390/pathogens11040478.903121335456153 Apri DOISearch in Google Scholar

Zhong, S. and Steffenson, B.J. (2001). Virulence and molecular diversity in Cochliobolus sativus. Phytopathology, 91(5), 469 ‒ 476. DOI:10.1094/PhYto.2001.91.5.469. Apri DOISearch in Google Scholar

Zohara, F., Surovy, M.Z., Khatun, A., Prince, M.F.R.K., Akanda, A.M., Rahman, M., and Islam, T. (2019). Chitosan bio-stimulant controls infection of cucumber by Phytophthora capsici through suppression of asexual reproduction of the pathogen. Acta Agrobotanica, 72(1), 1‒8. DOI:10.5586/aa.1763. Apri DOISearch in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo