[
Ahmad, M., Rajapaksha, A.U., Lim, J.E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S.S., and Ok, Y.S. (2014). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99, 19 ‒ 33. DOI:10.1016/j.chemosphere.2013.10.071.24289982
]Apri DOISearch in Google Scholar
[
Awad, M., Moustafa-Farag, M., Wei, L. et al. (2020). Effect of garden waste biochar on the bioavailability of heavy metals and growth of Brassica juncea (L.) in a multi-contaminated soil. Arabian Journal of Geosciences, 13, 439. DOI:10.1007/s12517-020-05376-w.
]Apri DOISearch in Google Scholar
[
Blackwell, P., Joseph, S., Munroe, P., Anawar, H.M., Storer, P., Gilkes, R.J., and Solaiman, Z.M. (2015). Influences of bio-char and biochar-mineral complex on mycorrhizal colonisation and nutrition of wheat and sorghum. Pedosphere, 25, 686 ‒ 695. DOI:10.1016/S1002-0160(15)30049-7.
]Apri DOISearch in Google Scholar
[
Borchard, N., Wolf, A., Laabs, V., Aeckersberg, R., Scherer, H.W., Moeller, A. and Amelung, W. (2012). Physical activation of biochar and its meaning for soil fertility and nutrient leaching-a greenhouse experiment. Soil Use and Management, 28(2), 177 ‒ 184. DOI:10.1111/j.1475-2743.2012.00407.x.
]Apri DOISearch in Google Scholar
[
Braghiroli, F.L., Bouafif, H., Neculita, C.M., and Koubaa, A. (2018). Activated biochar as an effective sorbent for organic and inorganic contaminants in water. Water, Air, & Soil Pollution, 229, 230. DOI:10.1007/s11270-018-3889-8.
]Apri DOISearch in Google Scholar
[
Braghiroli, F.L., Bouafif, H., Neculita, C.M., and Koubaa, A. (2019). Performance of physically and chemically activated biochars in copper removal from contaminated mine effluents. Water, Air, & Soil Pollution, 230, 178. DOI:10.1007/s11270-019-4233-7.
]Apri DOISearch in Google Scholar
[
Casini, D., Barsali, T., Rizzo, A.M., and Chiaramonti, D. (2021). Production and characterization of co-composted biochar and digestate from biomass anaerobic digestion. Biomass Conversion and Biorefinery, 11, 2271 ‒ 2279. DOI:10.1007/s13399-019-00482-6.
]Apri DOISearch in Google Scholar
[
Chan, K.Y., Van Zwieten, L., Meszaros, I., Downie, A., and Joseph, S. (2008). Using poultry litter biochars as soil amendments. Australian Journal of Soil Research, 46, 437 ‒ 444. DOI:10.1071/SR08036.
]Apri DOISearch in Google Scholar
[
Chia, C.H., Singh, B.P., Joseph, S., Graber, E.R., and Munroe, P. (2014). Characterization of an enriched biochar. Journal of Analytical and Applied Pyrolysis, 108, 26 ‒ 34. DOI: 10.1016/j.jaap.2014.05.021.
]Apri DOISearch in Google Scholar
[
Cui, J., Jin, Q., Li, Y., and Li, F. (2019). The oxidation and removal of As(III) from soil using a novel magnetic nano-composite derived-biomass wastes. Environmental Science: Nano, 2. DOI:10.1039/c8en01257a.
]Apri DOISearch in Google Scholar
[
Dad, F.P., Khan, W., Tanveer, M., Ramzani, M.A., Shaukat, R., and Muktadir, A. (2021). Influence of iron-enriched biochar on cd sorption, its ionic concentration and redox regulation of radish under cadmium toxicity. Agriculture, 11(1), 1. DOI: 10.3390/agriculture11010001.
]Apri DOISearch in Google Scholar
[
Demiral, H., Demiral, İ., Karabacakoğlu, B., and Tümsek, F. (2011). Production of activated carbon from olive bagasse by physical activation. Chemical Engineering Research and Design, 89, 206 ‒ 213. DOI:10.1016/j.cherd.2010.05.005.
]Apri DOISearch in Google Scholar
[
Dietrich, C., Rahaman, A., Robles-Aguilar, A.A., Latif, S., Intani, K., Muller, J., and Jablonowski, N.D. (2020). Nutrient loaded biochar doubled biomass production in juvenile maize plants (Zea mays L.). Agronomy, 10, 567. DOI:10.3390/agronomy10040567.
]Apri DOISearch in Google Scholar
[
Dil, M., Oelbermann, M., and Xue, W. (2014). An evaluation of biochar pre-conditioned with urea ammonium nitrate on maize (Zea mays L.) production and soil biochemical characteristics. Canadian Journal of Soil Science, 94, 551 ‒ 562. DOI:10.4141/cjss-2014-010.
]Apri DOISearch in Google Scholar
[
Ding, Y., Liu, Y., Liu, S., Huang, X., Li, Z., Tan, X., Zeng, G., and Zhou, L. (2017). Potential benefits from biochar application for agricultural use: A review. Pedosphere, 27, 645 ‒ 661. DOI:10.1016/S1002-0160(17)60375-8.
]Apri DOISearch in Google Scholar
[
Domingues, R.R., Trugilho, P.F., and Silva, C.A. (2017). Properties of biochar derived from wood and high nutrient biomasses with the aim of agronomic and environmental benefits. PLoS One, 12, 1 ‒ 19. DOI:10.1371/journal.pone.0176884.542662728493951
]Apri DOISearch in Google Scholar
[
Enders, A., Hanley, K., Whitman, T., Joseph, S., and Lehmann, J. (2012). Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresource Technology, 114, 644 ‒ 53. DOI:10.1016/j.biortech.2012.03.022.22483559
]Apri DOISearch in Google Scholar
[
Fahmi, A.H., Samsuri, A.W., Jol, H., and Singh, D. (2018). Physical modification of biochar to expose the inner pores and their functional groups to enhance lead adsorption. RSC Advances, 8, 38270 ‒ 38280. DOI:10.1039/c8ra06867d.909244135559079
]Apri DOISearch in Google Scholar
[
Farhangi-Abriz, S. and Ghassemi-Golezani, K. (2021). Changes in soil properties and salt tolerance of safflower in response to biochar-based metal oxide nanocomposites of magnesium and manganese. Ecotoxicology and Environmental Safety, 211, 111904. DOI:10.1016/j.ecoenv.2021.111904.33453639
]Apri DOISearch in Google Scholar
[
Filiberto, D. and Gaunt, J. (2013). Practicality of biochar additions to enhance soil and crop productivity. Agriculture, 3, 715 ‒ 725. DOI:10.3390/agriculture3040715.
]Apri DOISearch in Google Scholar
[
Gao, M., Xu, Y., Chang, X., and Song, Z. (2021). Fe-Mn oxide modified biochar decreases phthalate uptake and improves grain quality of wheat grown in phthalate-contaminated fluvo-aquic soil. Chemosphere, 270, 129428. DOI:10.1016/j.chemosphere.2020.129428.33388501
]Apri DOISearch in Google Scholar
[
Ghassemi-Golezani, K. and Abdoli, S. (2022). Alleviation of salt stress in rapeseed (Brassica napus L.) plants by bio-char-based rhizobacteria: new insights into the mechanisms regulating nutrient uptake, antioxidant activity, root growth and productivity. Archives of agronomy and soil science. DOI:10.1080/03650340.2022.2103547.
]Apri DOISearch in Google Scholar
[
Ghassemi-Golezani, K., Farhangi-Abriz, S., and Abdoli, S. (2021). How can biochar-based metal oxide nanocomposites counter salt toxicity in plants? Environmental Geo-chemistry and Health, 43, 2007 ‒ 2023. DOI:10.1007/s10653-020-00780-3.33219907
]Apri DOISearch in Google Scholar
[
Ghassemi-Golezani, K. and Rahimzadeh, S. (2022). Bio-char-based nutritional nanocomposites: a superior treatment for alleviating salt toxicity and improving physiological performance of dill (Anethum graveolens). Environmental Geochemistry and Health, PMID: 36153765. DOI:10.1007/s10653-022-01397-4.36153765
]Apri DOISearch in Google Scholar
[
Ghezzehei, T.A., Sarkhot, D.V., and Berhe, A.A. (2014). Bio-char can be used to capture essential nutrients from dairy wastewater and improve soil physico-chemical properties. Solid Earth, 5, 953 ‒ 962. DOI:10.5194/se-5-953-2014.
]Apri DOISearch in Google Scholar
[
Ghosh, S. and Barron, A.R. (2017). The effect of KOH concentration on chemical activation of porous carbon sorbents for carbon dioxide uptake and carbon dioxide-methane selectivity: the relative formation of micro- (<2 nm) versus meso- (>2 nm) porosity. Sustainable Energy & Fuels, 1, 806 ‒ 813. DOI:10.1039/C6SE00102E.
]Apri DOISearch in Google Scholar
[
Gondek, K., Mierzwa-Hersztek, M., Kopeć, M., and Mróz, T. (2018). The influence of biochar enriched with magnesium and sulfur on the amount of Perennial Ryegrass biomass and selected chemical properties and biological of sandy soil. sandy soil. Communications in Soil Science and Plant Analysis, 49, 1257 ‒ 1265. DOI:10.1080/00103624.2018.1455848.
]Apri DOISearch in Google Scholar
[
Gwenzi, W., Nyambishi, T.J., Chaukura, N., and Mapope, N. (2017). Synthesis and nutrient release patterns of a bio-char-based N-P-K slow-release fertilizer. International Journal of Environmental Science and Technology, 15, 405 ‒ 414. DOI:10.1007/s13762-017-1399-7.
]Apri DOISearch in Google Scholar
[
Hafeez, A., Pan, T., Tian, J., and Cai, K. (2022). Modified bio-chars and their effects on soil quality: A review. Environments, 9, 60. DOI:10.3390/environments9050060.
]Apri DOISearch in Google Scholar
[
Heidarinejad, Z., Dehghani, M.H., Heidari, M., Javedan, G., Ali, I., and Sillanpä, M. (2020). Methods for preparation and activation of activated carbon: a review. Environmental Chemistry Letters, 18, 1 ‒ 23. DOI:10.1007/s10311-019-00955-0.
]Apri DOISearch in Google Scholar
[
Hossain, M.K., Strezov, V., Chan, K.Y., and Nelson, P.F. (2010). Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere, 78, 1167 ‒ 1171. DOI:10.1016/j.chemosphere.2010.01.009.20110103
]Apri DOISearch in Google Scholar
[
Huang, Q., Song, S., Chen, Z., Hu, B., Chen, J., and Wang, X. (2019). Biochar-based materials and their applications in removal of organic contaminants from wastewater: state-of-the-art review. Biochar, 1, 45 ‒ 73. DOI:10.1007/s42773-019-00006-5.
]Apri DOISearch in Google Scholar
[
Hussain, M., Farooq, M., Nawaz, A., Al-Sadi, A.M., Solaiman, Z.M., Alghamdi, S.S., Ammara, U., Ok, Y.S., and Siddique, K.H.M. (2017). Biochar for crop production: Potential benefits and risks. Journal of Soils and Sediments, 17, 685 ‒ 716. DOI:10.1007/s11368-016-1360-2.
]Apri DOISearch in Google Scholar
[
Islam, M.S., Abdoul Magid, A.I., Chen, Y., Weng Jie Ma, L., Arafat, M.Y., Haider Khan, Z., and Li, Y. (2021). Effect of calcium and iron-enriched biochar on arsenic and cadmium accumulation from soil to rice paddy tissues. Science of the Total Environment, 785, 147163. DOI:10.1016/j.scitotenv.2021.147163.33940407
]Apri DOISearch in Google Scholar
[
Jing, F., Chen, C., Chen, X., Liu, W., Wen, X., and Hu, S.H. (2021). Cadmium transport in red paddy soils amended with wheat straw biochar. Environmental Monitoring and Assessment, 193, 381. DOI:10.1007/s10661-021-09162-3.34085125
]Apri DOISearch in Google Scholar
[
Joseph, S., Graber, E.R., Chia, C., Munroe, P., Donne, S., Thomas, T., Nielsen, S., Marjo, C., Rutlidge, H., Pan, G.X., Li, L., Taylor, P., Rawal, A., and Hook, J. (2013). Shifting paradigms: Development of high-efficiency biochar fertilizers based on nano-structures and soluble components. Carbon Management, 4, 323 ‒ 343. DOI:10.4155/cmt.13.23.
]Apri DOISearch in Google Scholar
[
Joseph, S., Anawar, H., Storer, P., Blackwell, P., Chia, C., Munroe, P., Donne, S., Horvat, J., Wang, J., and Solaiman, Z. (2015). Effects of enriched biochars containing magnetic iron nanoparticles on mycorrhizal colonisation, plant growth, nutrient uptake and soil quality improvement. Pedosphere, 25, 749 ‒ 760. DOI:10.1016/S1002-0160(15)30056-4.
]Apri DOISearch in Google Scholar
[
Kalinke, C., Oliveira, P.R., Mangrich, A., MarcolinoJuniorb, L., and Bergamini, M. (2020). Chemically-activated bio-char from Ricinus communis L. cake and their potential applications for the voltammetric assessment of some relevant environmental pollutants. Journal of the Brazilian Chemical Society, 31, 941 ‒ 952. DOI:10.21577/0103-5053.20190259.
]Apri DOISearch in Google Scholar
[
Karim, A.A., Kumar, M., Singh, E., Kumar, A., Kumar, S., Ray, A., Kumar Dhal, N. (2021). Enrichment of primary macro-nutrients in biochar for sustainable agriculture: A review. Critical Reviews in Environmental Science and Technology, 52(9), 1449 ‒ 1490. DOI:10.1080/10643389.2020.1859271.
]Apri DOISearch in Google Scholar
[
Kizito, S., Luo, H., Lu, J., Bah, H., Dong, R., and Wu, S. (2019). Role of nutrient-enriched biochar as a soil amendment during maize growth: exploring practical alternatives to recycle agricultural residuals and to reduce chemical fertilizer demand. Sustainability, 11, 3211. DOI:10.3390/su11113211.
]Apri DOISearch in Google Scholar
[
Kołtowski, M., Charmas, B., Skubiszewska-Zieba, J., and Oleszczuk, P. (2017). Effect of biochar activation by different methods on toxicity of soil contaminated by industrial activity. Ecotoxicology and Environmental Safety, 136, 119 ‒ 125. DOI:10.1016/j.ecoenv.2016.10.033.27842277
]Apri DOISearch in Google Scholar
[
Lee, J.E. and Park, Y.K. (2020). Applications of modified bio-char-based materials for the removal of environment pollutants: a mini review. Sustainability, 12, 6112. DOI:10.3390/su12156112.
]Apri DOISearch in Google Scholar
[
Li, J., Cai, X., Liu, Y., Gu, Y., Wang, H., Liu, S., Liu, S., Yin, Y., and Liu, S. (2020). Design and synthesis of a biochar-supported nano manganese dioxide composite for antibiotics removal from aqueous solution. Frontiers in Environmental Science, 8, 62. DOI:10.3389/fenvs.2020.00062.
]Apri DOISearch in Google Scholar
[
Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O’Neill, B., Skjemstad, J.O., Thies, J., Luiza˜o, F.J., Petersen, J., and Neves, E.G. (2006). Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal, 70, 1719 ‒ 1730. DOI:10.2136/sssaj2005.0383.
]Apri DOISearch in Google Scholar
[
Lian, F., Liu, X., Gao, M., Li, H., Qiu, W., and Song, Z. (2020). Effects of Fe-Mn-Ce oxide–modified biochar on As accumulation, morphology, and quality of rice (Oryza sativa L.). Environmental Science and Pollution Research, 27, 18196 ‒ 18207. DOI:10.1007/s11356-020-08355-6.32172416
]Apri DOISearch in Google Scholar
[
Lima, I.M., Boateng, A.A., and Klasson, K.T. (2010). Physicochemical and adsorptive properties of fast-pyrolysis biochars and their steam activated counterparts. Journal of Chemical Technology & Biotechnology, 85, 1515 ‒ 1521. DOI:10.1002/jctb.2461.
]Apri DOISearch in Google Scholar
[
Lin, L., Li, Z., Liu, X., Qiu, W., and Song, Z. (2019). Effects of Fe-Mn modified biochar composite treatment on the properties of As-polluted paddy soil. Environmental Pollution, 244, 600 ‒ 607. DOI:10.1016/j.envpol.2018.10.011.30384065
]Apri DOISearch in Google Scholar
[
Liu, S., Lu, Y., Yang, C., Liu, C., Ma, L., and Dang, Z. (2017). Effects of modified biochar on rhizosphere microecology of rice (Oryza sativa L.) grown in As-contaminated soil. Environmental Science and Pollution Research, 24, 23815 ‒ 23824. DOI:10.1007/s11356-017-9994-1.28866780
]Apri DOISearch in Google Scholar
[
Liu, H., Xu, F., Xie, Y., Wang, C., Zhang, A., Li, L., and Xu, H. (2018). Effect of modified coconut shell biochar on availability of heavy metals and biochemical characteristics of soil in multiple heavy metals contaminated soil. Science of the Total Environment, 645, 702 ‒ 709. DOI:10.1016/j.scitotenv.2018.07.115.30031328
]Apri DOISearch in Google Scholar
[
Liu, L., Li, Y., and Fan, S. (2019). Preparation of KOH and H3PO4 modified biochar and its application in methylene blue removal from aqueous solution. Processes, 7, 891. DOI:10.3390/pr7120891.
]Apri DOISearch in Google Scholar
[
Liu, C., Wang, W., Wu, R., Liu, Y., Lin, X., Kan, H., and Zheng, Y. (2020). Preparation of acid- and alkali-modified biochar for removal of methylene blue pigment. ACS Omega, 5, 30906 ‒ 30922. DOI:10.1021/acsomega.0c03688.772675833324799
]Apri DOISearch in Google Scholar
[
Lu, H.P., Li, Z.A., Gascó, G., Méndez, A., Shen, Y., and Paz-Ferreiro, J. (2018). Use of magnetic biochars for the immobilization of heavy metals in a multi-contaminated soil. Science of the Total Environment, 622 ‒ 623, 892 ‒ 899. DOI:10.1016/j.scitotenv.2017.12.056.29227940
]Apri DOISearch in Google Scholar
[
Maharlouei, Z.D., Fekri, M., Saljooqi, A., Mahmoodabadi, M., and Hejazi, M. (2021). Effect of modified biochar on the availability of some heavy metals speciation and investigation of contaminated calcareous soil. Environmental Earth Sciences, 80, 119. DOI:10.1007/s12665-021-09418-8.
]Apri DOISearch in Google Scholar
[
Mandal, S., Sarkar, B., Bolan, N., Ok, Y.S., and Naidu, R. (2017). Enhancement of chromate reduction in soils by surface modified biochar. Journal of Environmental Management, 186, 277 ‒ 284. DOI:10.1016/j.jenvman.2016.05.034.27229360
]Apri DOISearch in Google Scholar
[
Matoso, S.C.G., WADT, P.G.S., Souza Júnior, VS de., and Pérez, X.L.O. (2019). Synthesis of enriched biochar as a vehicle for phosphorus in tropical soils. Acta Amazonica, 49, 268 ‒ 276. DOI:10.1590/1809-4392201803852.
]Apri DOISearch in Google Scholar
[
Mensah, A.K. and Frimpong, K.A. (2018). Biochar and/or compost applications improve soil properties, growth, and yield of maize grown in acidic rainforest and coastal savannah soils in Ghana. International Journal of Agronomy, 2018, 6837404, 1 ‒ 8. DOI:10.1155/2018/6837404.
]Apri DOISearch in Google Scholar
[
Moradi, S., Rasouli-Sadaghiani, M.H., Sepehr, E., Khodaverdiloo, H., and Barin, M. (2019). Soil nutrients status affected by simple and enriched biochar application under salinity conditions. Environmental Monitoring and Assessment, 191(4), 257. DOI:10.1007/s10661-019-7393-4.30929074
]Apri DOISearch in Google Scholar
[
Muhammad, N., Hussain, M., Ullah, W. et al. (2018). Bio-char for sustainable soil and environment: a comprehensive review. Arabian Journal of Geosciences, 11, 731. DOI:10.1007/s12517-018-4074-5.
]Apri DOISearch in Google Scholar
[
Nguyen, T.H., Pham, T.H., Nguyen, T., Hong, T., Nguyen, T.N., Nguyen, M.V. et al. (2019). Synthesis of iron-modified biochar derived from rice straw and its application to arsenic removal. Journal of Chemistry, 5295610, 1 ‒ 8. DOI:10.1155/2019/5295610.
]Apri DOISearch in Google Scholar
[
Nkoh, J.N., Baquy, M.A., Mia, S., Shi, R., Kamran, M.A., Mehmood, K., and Xu, RA. (2021). Critical-systematic review of the interactions of biochar with soils and the observable outcomes. Sustainability, 13, 13726. DOI:10.3390/su132413726.
]Apri DOISearch in Google Scholar
[
Ok, Y.S., Chang, S.X., Gao, B., and Chung, H.J. (2015). SMART biochar technology- a shifting paradigm towards advanced materials and healthcare research. Environmental Technology & Innovation, 4, 206 ‒ 209. DOI:10.1016/j.eti.2015.08.003.
]Apri DOISearch in Google Scholar
[
Oleszczuk, P., Jośko, I., Kuśmierz, M., Futa, B., Wielgosz, E., Ligeza, S., and Pranagal, J. (2014). Microbiological, biochemical and eco-toxicological evaluation of soils in the area of biochar production in relation to polycyclic aromatic hydrocarbon content. Geoderma, 213, 502 ‒ 511. DOI:10.1016/j.geoderma.2013.08.027.
]Apri DOISearch in Google Scholar
[
Rajendran, M., Shi, L., Wu, C., Li, W., An, W., Liu, Z., and Xue, S. (2019). Effect of sulfur and sulfur-iron modified biochar on cadmium availability and transfer in the soil-rice system. Chemosphere, 222, 314 ‒ 322. DOI:10.1016/j.chemosphere.2019.01.149.30708165
]Apri DOISearch in Google Scholar
[
Rajput, V.D., Gorovtsov, A.V., Fedorenko, G.M., Minkina, T.M., Fedorenko, A.G., Lysenko, V.S., Sushkova, S.S., Mandzhieva, S.S., and Elinson, M.A. (2020). The influence of application of biochar and metal-tolerant bacteria in polluted soil on morpho-physiological and anatomical parameters of spring barley. Environmental Geochemistry and Health, 43, 1477 ‒ 1489. DOI:10.1007/s10653-019-00505-1.31989352
]Apri DOISearch in Google Scholar
[
Rahimzadeh, S., and Ghassemi-Golezani, K. (2022). Biochar-based nutritional nanocomposites altered nutrient uptake and vacuolar H+-Pump activities of dill under salinity. Journal of soil science and plant nutrition, 22, 3568 ‒ 3581. DOI:10.1007/s42729-022-00910-z.
]Apri DOISearch in Google Scholar
[
Ramola, S., Mohan, D., Masek, O., Méndez, A., and Tsubota, T. (2022). Engineered biochar: Fundamentals, preparation, characterization and applications. Springer, 381. DOI:10.1007/978-981-19-2488-0.
]Apri DOISearch in Google Scholar
[
Reddy, D.H.K. and Lee, S.M. (2014). Magnetic biochar composite: facile synthesis, characterization, and application for heavy metal removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 454, 96 ‒ 103. DOI:10.1016/j.colsurfa.2014.03.105.
]Apri DOISearch in Google Scholar
[
Rizhiya, E.Y., Horák, J., Šimanský, V., and Buchkina, N.P. (2020). Nitrogen enriched biochar-compost mixture as a soil amendment to the Haplic Luvisol: effect on greenhouse gas emission. Biologia, 75, 873 ‒ 884. DOI:10.2478/s11756-019-00335-7.
]Apri DOISearch in Google Scholar
[
Sahin, O., Taskin, M.B., Kaya, E.C., Atakol, O., Emir, E., Inal, A., and Gunes, A. (2017). Effect of acid modification of biochar on nutrient availability and maize growth in a calcareous soil. Soil Use and Management, 33, 447 ‒ 456. DOI:10.1111/sum.12360.
]Apri DOISearch in Google Scholar
[
Sajjadi, B., Zubatiuk, T., Leszczynska, D., Leszczynski, J., and Chen, W.Y. (2018). Chemical activation of biochar for energy and environmental applications: a comprehensive review. Reviews in Chemical Engineering, 35, 777 ‒ 815. DOI:10.1515/revce-2018-0003.
]Apri DOISearch in Google Scholar
[
Sakhiya, A.K., Anand, A., and Kaushal, P. (2020). Production, activation, and applications of biochar in recent times. Biochar, 2, 253 ‒ 285. DOI:10.1007/s42773-020-00047-1.
]Apri DOISearch in Google Scholar
[
Salgado, M.F., Abioye, A.M., Junoh, M.M., Santos, J.A.P., and Ani, F.N. (2018). Preparation of activated carbon from babassu endocarpunder microwave radiation by physical activation. IOP Conference Series. Earth and Environmental Science, 105, 012116. DOI:10.1088/1755-1315/105/1/012116.
]Apri DOISearch in Google Scholar
[
Sarkhot, D.V., Berhe, A.A., and Ghezzehei, T.A. (2012). Impact of biochar enriched with dairy manure effluent on carbon and nitrogen dynamics. Journal of Environment Quality, 41, 1107 ‒ 1114. DOI:10.2134/jeq2011.0123.22751052
]Apri DOISearch in Google Scholar
[
Schmidt, H.P., Pandit, B.H., Martinsen, V., Cornelissen, G., Conte, P., and Kammann, C. (2015). Fourfold increase in pumpkin yield in response to low-dosage root zone application of urine-enhanced biochar to a fertile tropical soil. Agriculture, 5, 723 ‒ 741. DOI:10.3390/agriculture5030723.
]Apri DOISearch in Google Scholar
[
Shetty, R., and Prakash, N.B. (2020). Effect of different biochars on acid soil and growth parameters of rice plants under aluminum toxicity. Scientific Reports, 10, 12249. DOI:10.1038/s41598-020-69262-x.737805232704053
]Apri DOISearch in Google Scholar
[
Silva, T.C.F., Vergütz, L., Pacheco, A., Melo, L.F., Renato, N.S., and Melo, L.C.A. (2020). Characterization and application of magnetic biochar for the removal of phosphorus from water. Anais da Academia Brasileira de Ciencias, 92, 3. DOI:10.1590/0001-3765202020190440.33206798
]Apri DOISearch in Google Scholar
[
Sohi, S.P. (2012). Carbon Storage with Benefits. Science, 338, 1034 ‒ 1035. DOI:10.1126/science.1225987.23180849
]Apri DOISearch in Google Scholar
[
Strobel, R., Garche, J., Moseley, P.T., Jörissen, L., and Wolf, G. (2006). Hydrogen storage by carbon materials. Journal of Power Sources, 159, 781 ‒ 801. DOI:10.1016/j.jpowsour.2006.03.047.
]Apri DOISearch in Google Scholar
[
Tan, X-f., Liu, Y-g., Gu, Y-l., Xu, Y., Zeng, G-m., Hu, X-j., Liu, S-b., Wang, X., Liu, S-m., and Li, J. (2016). Biochar-based nano-composites for the decontamination of wastewater: a review. Bioresource Technology, 212, 318 ‒ 333. DOI:10.1016/j.biortech.2016.04.093.27131871
]Apri DOISearch in Google Scholar
[
Tan, X., Wei, W., Xu, C., Meng, Y., Bai, W., Yang, W., and Lin, A. (2020). Manganese-modified biochar for highly efficient sorption of cadmium. Environmental Science and Pollution Research, 27, 9126 ‒ 9134. DOI:10.1007/s11356-019-07059-w.31916167
]Apri DOISearch in Google Scholar
[
Tian, K., Liu, W.J., Qian, T.T., Jiang, H., and Yu, H.Q. (2014). Investigation on the evolution of N-containing organic compounds during pyrolysis of sewage sludge. Environmental Science & Technology, 48, 10888 ‒ 10896. DOI:10.1021/es5022137.25141119
]Apri DOISearch in Google Scholar
[
Tokova, L., Igaz, D., Horak, J., and Aydin, E. (2020). Effect of biochar application and re-application on soil bulk density, porosity, saturated hydraulic conductivity, water content and soil water availability in a silty loam Haplic Luvisol. Agronomy, 10, 1005. DOI:10.3390/agronomy10071005.
]Apri DOISearch in Google Scholar
[
Trakal, L., Veselská, V., Safařík, I., Vítková, M., Cíhalová, S., and Komárek, M. (2016). Lead and cadmium sorption mechanisms on magnetically modified biochars. Bioresource Technology, 203, 318 ‒ 324. DOI:10.1016/j.biortech.2015.12.056.26748045
]Apri DOISearch in Google Scholar
[
Uddin, M.N., Techato, K., Taweekun, J., Rahman, M.M., Rasul, M.G., Mahlia, T.M.I., and Ashrafur, S.M. (2018). An overview of recent developments in biomass pyrolysis technologies. Energies, 11, 3115. DOI:10.3390/en11113115
]Apri DOISearch in Google Scholar
[
Ullah, Za., Ali, S., Muhammad, N. et al. (2020). Biochar impact on microbial population and elemental composition of red soil. Arabian Journal of Geosciences, 13, 757. DOI:10.1007/s12517-020-05671-6.
]Apri DOISearch in Google Scholar
[
Utomo, W.H., Islami, T., Wisnubroto, E., and Soelistyari, H.T. (2017). Biochar as a carrier for nitrogen plant nutrition: 3. effect of enriched biochar on rice (Oryza sativa L.) yield and soil qualities. International Journal of Applied Engineering Research, 12, 10426 ‒ 10432.
]Search in Google Scholar
[
Wali, F., Naveed, M., Bashir, M.A., Asif, M., Ahmad, Z., Alkahtani, J., Alwahibi, M.S., and Soliman Elshikh, M. (2020). Formulation of biochar-based phosphorus fertilizer and its impact on both soil properties and chickpea growth performance. Sustainability, 12, 9528. DOI:10.3390/su12229528.
]Apri DOISearch in Google Scholar
[
Wang, S., Gao, B., Zimmerman, A.R., Li, Y., Ma, L., Harris, W.G., and Migliaccio, K.W. (2015). Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite. Bioresource Technology, 175, 391 ‒ 395. DOI:10.1016/j.biortech.2014.10.104.25459847
]Apri DOISearch in Google Scholar
[
Wang, C.H., Gu, L.F., Ge, S.M., Li, X.Y., Zhang, X.Y., and Chen, X. (2019). Remediation potential of immobilized bacterial consortium with biochar as carrier in pyrene-Cr(VI) co-contaminated soil. Environmental Technology, 40, 2345 ‒ 2353. DOI:10.1080/09593330.2018.1441328.29465023
]Apri DOISearch in Google Scholar
[
Wang, Y., Zheng, K., Zhan, W., Huang, L., Liu, Y., Li, T., Yang, Z., Liao, Q., Chen, R., Zhang, C., and Wang, Z. (2021). Highly effective stabilization of Cd and Cu in two different soils and improvement of soil properties by multiple-modified biochar. Ecotoxicology and Environmental Safety, 207, 111294. DOI:10.1016/j.ecoenv.2020.111294.32931971
]Apri DOISearch in Google Scholar
[
Wen, P., Wu, Z., Han, Y., Cravotto, G., Wang, J., and Ye, B.C. (2017). microwave-assisted synthesis of a novel biochar-based slow-release nitrogen fertilizer with enhanced water retention capacity. ACS Sustainable Chemistry & Engineering, 5, 7374 ‒ 7382. DOI:10.1021/acssuschemeng.7b01721.
]Apri DOISearch in Google Scholar
[
Wu, C., Shi, L., Xue, S., Li, W., Jiang, X., Rajendran, M., and Qian, Z. (2019a). Effect of sulfur-iron modified biochar on the available cadmium and bacterial community structure in contaminated soils. Science of the Total Environment, 647, 1158 ‒ 1168. DOI:10.1016/j.scitotenv.2018.08.087.30180324
]Apri DOISearch in Google Scholar
[
Wu, L., Wei, C., Zhang, S., Wang, Y., Kuzyakov, Y., and Ding, X. (2019b). MgO-modified biochar increases phosphate retention and rice yields in saline-alkaline soil. Journal of Cleaner Production, 235, 901 ‒ 909. DOI:10.1016/j.jclepro.2019.07.043.
]Apri DOISearch in Google Scholar
[
Yang, X., Zhang, S., Ju, M., and Liu, L. (2019). Preparation and modification of biochar materials and their application in soil remediation. Applied Sciences, 9, 1365. DOI:10.3390/app9071365.
]Apri DOISearch in Google Scholar
[
Yao, Y., Gao, B., Chen, J., and Yang, L. (2013). Engineered biochar reclaiming phosphate from aqueous solutions: mechanisms and potential application as a slow-release fertilizer. Environmental Science & Technology, 47, 8700 ‒ 8708. DOI:10.1021/es4012977.23848524
]Apri DOISearch in Google Scholar
[
Yeboah, S., Zhang, R., Cai, L., Li, L., Xie, J., Luo, Z., Wu, J., and Antille, D.L. (2017). Soil water content and photosynthetic capacity of spring wheat as affected by soil application of nitrogen-enriched biochar in a semiarid environment. Photosynthetica, 55, 532 ‒ 542. DOI:10.1007/s11099-016-0672-1.
]Apri DOISearch in Google Scholar
[
Yi, Y., Huang, Z., Lu, B., Xian, J., Eric Tsang, P., Cheng, W., Fang, J., and Fang, Z. (2019). Magnetic biochar for environmental remediation: a review. Bioresource Technology, 298. DOI:10.1016/j.biortech.2019.122468.31839494
]Apri DOISearch in Google Scholar
[
Yu, Z., Qiu, W., Wang, F., Lei, M., Wang, D., and Song, Z. (2017). Effects of manganese oxide-modified biochar composites on arsenic speciation and accumulation in an indica rice (Oryza sativa L.) cultivar. Chemosphere, 168, 341 ‒ 349. DOI:10.1016/j.chemosphere.2016.10.069.27810533
]Apri DOISearch in Google Scholar
[
Zama, E.F., Reid, B.J., Sun, G.X., Yuan, H.Y., Li, X.M., Zhu, Y.G. (2018). Silicon (Si) biochar for the mitigation of arsenic (As) bioaccumulation in spinach (Spinacia oleracean) and improvement in the plant growth. Journal of Cleaner Production, 189, 386 ‒ 395. DOI:10.1016/j.jclepro.2018.04.056.
]Apri DOISearch in Google Scholar
[
Zhang, M., Gao, B., Yao, Y., Xue, Y., and Inyang, M. (2012). Synthesis of porous MgO-biochar nanocomposites for removal of phosphate and nitrate from aqueous solutions. Chemical Engineering Journal, 210, 26 ‒ 32. DOI:10.1016/j.cej.2012.08.052.
]Apri DOISearch in Google Scholar
[
Zhang, M. and Gao, B. (2013). Removal of arsenic, methylene blue, and phosphate by biochar/AlOOH nanocomposite. Chemical Engineering Journal, 226, 286 ‒ 292. DOI:10.1016/j.cej.2013.04.077.
]Apri DOISearch in Google Scholar
[
Zhang, Q., Dijkstra, F.A., Liu, X., Wang, Y., Huang, J., Lu, N., and Singer, A.C. (2014). Effects of biochar on soil microbial biomass after four years of consecutive application in the north China plain. PLoS ONE, 9, e102062. DOI:10.1371/journal.pone.0102062.409890225025330
]Apri DOISearch in Google Scholar
[
Zhang, H., Voroney, R.P., Price, G.W., and White, A.J. (2017). Sulfur-enriched biochar as a potential soil amendment and fertilizer. Soil Research, 55, 93 ‒ 99. DOI:10.1071/SR15256.
]Apri DOISearch in Google Scholar
[
Zhang, L., Guo, J., Huang, X., Wang, W., Sun, P., Li, Y., and Han, J. (2019). Functionalized biochar-supported magnetic MnFe2O4 nanocomposite for the removal of Pb(II) and Cd(ii). RSC Advances, 9, 365 ‒ 376. DOI:10.1039/c8ra09061k.905932135521601
]Apri DOISearch in Google Scholar
[
Zhang, Y., Zhao, C., Chen, G., Zhou, J., Chen, Z., Li, Z., Zhu, J., Feng, T., and Chen, Y. (2020). Response of soil microbial communities to additions of straw biochar, iron oxide, and iron oxide-modified straw biochar in an arsenic-contaminated soil. Environmental Science and Pollution Research, 27, 23761 ‒ 23768. DOI:10.1007/s11356-020-08829-7.32301073
]Apri DOISearch in Google Scholar
[
Zhao, C., Wang, B., Theng, B., Wu, P., Liu, F., Wang, S., Lee, X., Chen, M., Li, L., and Zhang, X. (2021). Formation and mechanisms of nano-metal oxide-biochar composites for pollutants removal: A review. Science of the Total Environment, 767, 145305. DOI:10.1016/j.scitotenv.2021.145305.33636788
]Apri DOISearch in Google Scholar
[
Zhou, L., Huang, Y., Qiu, W., Sun, Z., Liu, Z., and Song, Z. (2017). Adsorption properties of nano-MnO2-Biochar composites for copper in aqueous solution. Molecules, 22, 173. DOI:10.3390/molecules22010173.615580328117702
]Apri DOISearch in Google Scholar
[
Zimmer, D., Panten, K., Frank, M., Springer, A., and Leinweber, P. (2019). Sulfur-enriched bone char as alternative P fertilizer: spectroscopic, wet chemical, and yield response evaluation. Agriculture, 9, 21. DOI:10.3390/agriculture9010021.
]Apri DOISearch in Google Scholar