Accesso libero

Generowanie MostkÓW Disiarczkowych W BiaŁKach – RÓŻNorodnoŚĆ Strukturalna I Funkcjonalna BiaŁEk Dsba

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Arts I.S., Collet J.F. i wsp.: Dissecting the machinery that introduces disulfide bonds in Pseudomonas aeruginosa. mBio. 4, e00912-00913 (2013)ArtsI.S.ColletJ.F.i wsp.: Dissecting the machinery that introduces disulfide bonds in Pseudomonas aeruginosa. mBio4e0091200913201310.1128/mBio.00912-13Search in Google Scholar

Bader M.W., Hiniker A., Regeimbal J., Goldstone D., Haebel P.W., Riemer J., Metcalf P., Bardwell J.C.: Turning a disulfide isomerase into an oxidase: DsbC mutants that imitate DsbA. EMBO J. 20, 1555–1562 (2001)BaderM.W.HinikerA.RegeimbalJ.GoldstoneD.HaebelP.W.RiemerJ.MetcalfP.BardwellJ.C.Turning a disulfide isomerase into an oxidase: DsbC mutants that imitate DsbAEMBO J.2015551562200110.1093/emboj/20.7.1555Search in Google Scholar

Banas A.M., Bocian-Ostrzycka K.M., Jagusztyn-Krynicka E.K.: Engineering of the Dsb (disulfide bond) proteins – contribution towards understanding their mechanism of action and their applications in biotechnology and medicine. Crit. Rev. Microbiol. 45, 433–450 (2019)BanasA.M.Bocian-OstrzyckaK.M.Jagusztyn-KrynickaE.K.Engineering of the Dsb (disulfide bond) proteins – contribution towards understanding their mechanism of action and their applications in biotechnology and medicineCrit. Rev. Microbiol.45433450201910.1080/1040841X.2019.1622509Search in Google Scholar

Banas A.M., Bocian-Ostrzycka K.M., Plichta M., Dunin-Horkawicz S., Ludwiczak J., Placzkiewicz J., Jagusztyn-Krynicka E.K.: C8J_1298, a bifunctional thiol oxidoreductase of Campylobacter jejuni, affects Dsb (disulfide bond) network functioning. PLoS One, 15, e0230366 (2020)BanasA.M.Bocian-OstrzyckaK.M.PlichtaM.Dunin-HorkawiczS.LudwiczakJ.PlaczkiewiczJ.Jagusztyn-KrynickaE.K.C8J_1298, a bifunctional thiol oxidoreductase of Campylobacter jejuni, affects Dsb (disulfide bond) network functioningPLoS One15e0230366202010.1371/journal.pone.0230366Search in Google Scholar

Bardwell J.C., McGovern K., Beckwith J.: Identification of a protein required for disulfide bond formation in vivo. Cell, 67, 581–589 (1991)BardwellJ.C.McGovernK.BeckwithJ.Identification of a protein required for disulfide bond formation in vivo. Cell67581589199110.1016/0092-8674(91)90532-4Search in Google Scholar

Bocian-Ostrzycka K.M., Grzeszczuk M.J., Banas A.M., Jagusztyn-Krynicka E.K.: Bacterial thiol oxidoreductases – from basic research to new antibacterial strategies. Appl. Microbiol. Biotechnol. 101, 3977–3989 (2017)Bocian-OstrzyckaK.M.GrzeszczukM.J.BanasA.M.Jagusztyn-KrynickaE.K.Bacterial thiol oxidoreductases – from basic research to new antibacterial strategiesAppl. Microbiol. Biotechnol.10139773989201710.1007/s00253-017-8291-8540384928409380Search in Google Scholar

Bocian-Ostrzycka K.M., Grzeszczuk M.J., Banas A.M., Jastrzab K., Pisarczyk K., Kolarzyk A., Lasica A.M., Collet J.F., Jagusztyn-Krynicka E.K.: Engineering of Helicobacter pylori Dimeric Oxidoreductase DsbK (HP0231). Front. Microbiol. 7, 1158 (2016)Bocian-OstrzyckaK.M.GrzeszczukM.J.BanasA.M.JastrzabK.PisarczykK.KolarzykA.LasicaA.M.ColletJ.F.Jagusztyn-KrynickaE.K.Engineering of Helicobacter pylori Dimeric Oxidoreductase DsbK (HP0231)Front. Microbiol71158201610.3389/fmicb.2016.01158496024127507968Search in Google Scholar

Bocian-Ostrzycka K.M., Grzeszczuk M.J., Dziewit L., Jagusztyn-Krynicka E.K.: Diversity of the Epsilonproteobacteria Dsb (disulfide bond) systems. Front. Microbiol. 6, 570 (2015)Bocian-OstrzyckaK.M.GrzeszczukM.J.DziewitL.Jagusztyn-KrynickaE.K.Diversity of the Epsilonproteobacteria Dsb (disulfide bond) systemsFront. Microbiol6570201510.3389/fmicb.2015.00570446055826106374Search in Google Scholar

Bocian-Ostrzycka K.M., Lasica A.M., Dunin-Horkawicz S., Grzeszczuk M.J., Drabik K., Dobosz A.M., Godlewska R., Nowak E., Collet J.F., Jagusztyn-Krynicka E.K.: Functional and evolutionary analyses of Helicobacter pylori HP0231 (DsbK) protein with strong oxidative and chaperone activity characterized by a highly diverged dimerization domain. Front. Microbiol. 6, 1065 (2015)Bocian-OstrzyckaK.M.LasicaA.M.Dunin-HorkawiczS.GrzeszczukM.J.DrabikK.DoboszA.M.GodlewskaR.NowakE.ColletJ.F.Jagusztyn-KrynickaE.K.Functional and evolutionary analyses of Helicobacter pylori HP0231 (DsbK) protein with strong oxidative and chaperone activity characterized by a highly diverged dimerization domainFront. Microbiol61065201510.3389/fmicb.2015.01065459712826500620Search in Google Scholar

Christensen S., Groftehauge M.K., Byriel K., Huston W.M., Furlong E., Heras B., Martin J.L., McMahon R.M.: Structural and biochemical characterization of Chlamydia trachomatis DsbA reveals a cysteine-rich and weakly oxidising oxidoreductase. PLoS One, 11, e0168485 (2016)ChristensenS.GroftehaugeM.K.ByrielK.HustonW.M.FurlongE.HerasB.MartinJ.L.McMahonR.M.Structural and biochemical characterization of Chlamydia trachomatis DsbA reveals a cysteine-rich and weakly oxidising oxidoreductasePLoS One11e0168485201610.1371/journal.pone.0168485519344028030602Search in Google Scholar

Collet J.F., Riemer J., Bader M.W., Bardwell J.C.: Reconstitution of a disulfide isomerization system. J. Biol. Chem. 277, 26886–26892 (2002)ColletJ.F.RiemerJ.BaderM.W.BardwellJ.C.Reconstitution of a disulfide isomerization systemJ. Biol. Chem.2772688626892200210.1074/jbc.M20302820012004064Search in Google Scholar

Daniels R., Mellroth P., Bernsel A., Neiers F., Normark S., von Heijne G., Henriques-Normark B.: Disulfide bond formation and cysteine exclusion in Gram-positive bacteria. J. Biol. Chem. 285, 3300–3309 (2010)DanielsR.MellrothP.BernselA.NeiersF.NormarkS.von HeijneG.Henriques-NormarkB.Disulfide bond formation and cysteine exclusion in Gram-positive bacteriaJ. Biol. Chem.28533003309201010.1074/jbc.M109.081398282343219940132Search in Google Scholar

Denoncin K., Collet J.F.: Disulfide bond formation in the bacterial periplasm: major achievements and challenges ahead. Antioxid. Redox. Signal. 19, 63–71 (2013)DenoncinK.ColletJ.F.Disulfide bond formation in the bacterial periplasm: major achievements and challenges aheadAntioxid. Redox. Signal.196371201310.1089/ars.2012.4864367665722901060Search in Google Scholar

Depuydt M., Leonard S.E., Vertommen D., Denoncin K., Morsomme P., Wahni K., Messens J., Carroll K.S., Collet J.F.: A periplasmic reducing system protects single cysteine residues from oxidation. Science, 326, 1109–1111 (2009)DepuydtM.LeonardS.E.VertommenD.DenoncinK.MorsommeP.WahniK.MessensJ.CarrollK.S.ColletJ.F.A periplasmic reducing system protects single cysteine residues from oxidationScience32611091111200910.1126/science.117955719965429Search in Google Scholar

Duprez W., Premkumar L., Halili M.A., Lindahl F., Reid R.C., Fairlie D.P., Martin J.L.: Peptide inhibitors of the Escherichia coli DsbA oxidative machinery essential for bacterial virulence. J. Med. Chem. 58, 577–587 (2015)DuprezW.PremkumarL.HaliliM.A.LindahlF.ReidR.C.FairlieD.P.MartinJ.L.Peptide inhibitors of the Escherichia coli DsbA oxidative machinery essential for bacterial virulenceJ. Med. Chem.58577587201510.1021/jm500955s25470204Search in Google Scholar

Godlewska R., Dzwonek A., Mikula M., Ostrowski J., Pawlowski M., Bujnicki J.M., Jagusztyn-Krynicka E.K.: Helicobacter pylori protein oxidation influences the colonization process. Int. J. Med. Microbiol. 296, 321–324 (2006)GodlewskaR.DzwonekA.MikulaM.OstrowskiJ.PawlowskiM.BujnickiJ.M.Jagusztyn-KrynickaE.K.Helicobacter pylori protein oxidation influences the colonization processInt. J. Med. Microbiol.296321324200610.1016/j.ijmm.2005.11.01016545604Search in Google Scholar

Grabowska A.D., Jagusztyn-Krynicka E.K. i wsp.: Functional and bioinformatics analysis of two Campylobacter jejuni homologs of the thiol-disulfide oxidoreductase, DsbA. PLoS One, 9, e106247 (2014)GrabowskaA.D.Jagusztyn-KrynickaE.K.i wsp.: Functional and bioinformatics analysis of two Campylobacter jejuni homologs of the thiol-disulfide oxidoreductase, DsbAPLoS One9e106247201410.1371/journal.pone.0106247415223525181355Search in Google Scholar

Grimshaw J.P., Stirnimann C.U., Brozzo M.S., Malojcic G., Grutter M.G., Capitani G., Glockshuber R.: DsbL and DsbI form a specific dithiol oxidase system for periplasmic arylsulfate sulfotransferase in uropathogenic Escherichia coli. J. Mol. Biol. 380, 667–680 (2008)GrimshawJ.P.StirnimannC.U.BrozzoM.S.MalojcicG.GrutterM.G.CapitaniG.GlockshuberR.DsbL and DsbI form a specific dithiol oxidase system for periplasmic arylsulfate sulfotransferase in uropathogenicEscherichia coli. J. Mol. Biol.380667680200810.1016/j.jmb.2008.05.03118565543Search in Google Scholar

Grzeszczuk M.J., Bocian-Ostrzycka K.M., Banas A.M., Roszczenko-Jasinska P., Malinowska A., Stralova H., Haas R., Meyer T.F., Jagusztyn-Krynicka E.K.: Thioloxidoreductase HP0231 of Helicobacter pylori impacts HopQ-dependent CagA translocation. Int. J. Med. Microbiol. 308, 977–985 (2018)GrzeszczukM.J.Bocian-OstrzyckaK.M.BanasA.M.Roszczenko-JasinskaP.MalinowskaA.StralovaH.HaasR.MeyerT.F.Jagusztyn-KrynickaE.K.Thioloxidoreductase HP0231 of Helicobacter pylori impacts HopQ-dependent CagA translocationInt. J. Med. Microbiol.308977985201810.1016/j.ijmm.2018.08.00230131271Search in Google Scholar

Guddat L.W., Bardwell J.C., Zander T., Martin J.L.: The uncharged surface features surrounding the active site of Escherichia coli DsbA are conserved and are implicated in peptide binding. Protein Sci. 6, 1148–1156 (1997)GuddatL.W.BardwellJ.C.ZanderT.MartinJ.L.The uncharged surface features surrounding the active site of Escherichia coli DsbA are conserved and are implicated in peptide bindingProtein Sci.611481156199710.1002/pro.556006060321437129194175Search in Google Scholar

Heras B., Edeling M.A., Schirra H.J., Raina S., Martin J.L.: Crystal structures of the DsbG disulfide isomerase reveal an unstable disulfide. Proc. Natl. Acad. Sci. USA, 101, 8876–8881 (2004)HerasB.EdelingM.A.SchirraH.J.RainaS.MartinJ.L.Crystal structures of the DsbG disulfide isomerase reveal an unstable disulfideProc. Natl. Acad. Sci. USA10188768881200410.1073/pnas.0402769101Search in Google Scholar

Heras B., Totsika M., Jarrott R., Shouldice S.R., Guncar G., Achard M.E., Wells T.J., Argente M.P., McEwan A.G., Schembri M.A.: Structural and functional characterization of three DsbA paralogues from Salmonella enterica serovar typhimurium. J. Biol. Chem. 285, 18423–18432 (2010)HerasB.TotsikaM.JarrottR.ShouldiceS.R.GuncarG.AchardM.E.WellsT.J.ArgenteM.P.McEwanA.G.SchembriM.A.Structural and functional characterization of three DsbA paralogues from Salmonella enterica serovar typhimuriumJ. Biol. Chem.2851842318432201010.1074/jbc.M110.101360Search in Google Scholar

Inaba K., Ito K.: Structure and mechanisms of the DsbB-DsbA disulfide bond generation machine. Biochim. Biophys. Acta. 1783, 520–529 (2008)InabaK.ItoK.Structure and mechanisms of the DsbB-DsbA disulfide bond generation machineBiochim. Biophys. Acta.1783520529200810.1016/j.bbamcr.2007.11.006Search in Google Scholar

Inaba K., Murakami S., Nakagawa A., Iida H., Kinjo M., Ito K., Suzuki M.: Dynamic nature of disulphide bond formation catalysts revealed by crystal structures of DsbB. EMBO J. 28, 779–791 (2009)InabaK.MurakamiS.NakagawaA.IidaH.KinjoM.ItoK.SuzukiM.Dynamic nature of disulphide bond formation catalysts revealed by crystal structures of DsbBEMBO J.28779791200910.1038/emboj.2009.21Search in Google Scholar

Inaba K., Murakami S., Suzuki M., Nakagawa A., Yamashita E., Okada K., Ito K.: Crystal structure of the DsbB-DsbA complex reveals a mechanism of disulfide bond generation. Cell, 127, 789–801 (2006)InabaK.MurakamiS.SuzukiM.NakagawaA.YamashitaE.OkadaK.ItoK.Crystal structure of the DsbB-DsbA complex reveals a mechanism of disulfide bond generationCell127789801200610.1016/j.cell.2006.10.034Search in Google Scholar

Ireland P.M., McMahon R.M., Marshall L.E., Halili M., Furlong E., Tay S., Martin J.L., Sarkar-Tyson M.: Disarming Burk holderia pseudomallei: structural and functional characterization of a disulfide oxidoreductase (DsbA) required for virulence in vivo. Antioxid. Redox Sign. 20, 606–617 (2014)IrelandP.M.McMahonR.M.MarshallL.E.HaliliM.FurlongE.TayS.MartinJ.L.Sarkar-TysonM.Disarming Burk holderia pseudomallei: structural and functional characterization of a disulfide oxidoreductase (DsbA) required for virulence in vivo. Antioxid. Redox Sign206066172014Search in Google Scholar

Jagusztyn-Krynicka E. K. Banaś A.M., Grzeszczuk M. J.: Strategie badań tiolowych oksydoreduktaz. Post. Mikrobiol. 56, 326–334 (2017)Jagusztyn-KrynickaE. K.BanaśA.M.GrzeszczukM. J.Strategie badań tiolowych oksydoreduktazPost. Mikrobiol.563263342017Search in Google Scholar

Jameson-Lee M., Garduno R.A., Hoffman P.S.: DsbA2 (27 kDa Com1-like protein) of Legionella pneumophila catalyses extracyto plasmic disulphide-bond formation in proteins including the Dot/Icm type IV secretion system. Mol. Microbiol. 80, 835–852 (2011)Jameson-LeeM.GardunoR.A.HoffmanP.S.DsbA2 (27 kDa Com1-like protein) of Legionella pneumophila catalyses extracyto plasmic disulphide-bond formation in proteins including the Dot/Icm type IV secretion systemMol. Microbiol.80835852201110.1111/j.1365-2958.2011.07615.xSearch in Google Scholar

Javaheri A., Gerhard M. i wsp.: Helicobacter pylori adhesin HopQ engages in a virulence-enhancing interaction with human CEACAMs. Nat. Microbiol. 2, 16189 (2016)JavaheriA.GerhardM.i wsp.: Helicobacter pylori adhesin HopQ engages in a virulence-enhancing interaction with human CEACAMsNat. Microbiol216189201610.1038/nmicrobiol.2016.189Search in Google Scholar

Kaakoush N.O., Kovach Z., Mendz G.L.: Potential role of thiol: disulfide oxidoreductases in the pathogenesis of Helicobacter pylori. FEMS Immunol. Med. Microbiol. 50, 177–183 (2007)KaakoushN.O.KovachZ.MendzG.L.Potential role of thiol: disulfide oxidoreductases in the pathogenesis of Helicobacter pyloriFEMS Immunol. Med. Microbiol.50177183200710.1111/j.1574-695X.2007.00259.xSearch in Google Scholar

Katzen F., Beckwith J.: Transmembrane electron transfer by the membrane protein DsbD occurs via a disulfide bond cascade. Cell, 103, 769–779 (2000)KatzenF.BeckwithJ.Transmembrane electron transfer by the membrane protein DsbD occurs via a disulfide bond cascadeCell103769779200010.1016/S0092-8674(00)00180-XSearch in Google Scholar

Koniger V., Haas R. i wsp.: Helicobacter pylori exploits human CEACAMs via HopQ for adherence and translocation of CagA. Nat. Microbiol. 2, 16188 (2016)KonigerV.HaasR.i wsp.: Helicobacter pylori exploits human CEACAMs via HopQ for adherence and translocation of CagANat. Microbiol216188201610.1038/nmicrobiol.2016.18827748756Search in Google Scholar

Kpadeh Z.Z., Day S.R., Mills B.W., Hoffman P.S.: Legionella pneumophila utilizes a single-player disulfide-bond oxidoreductase system to manage disulfide bond formation and isomerization. Mol. Microbiol. 95, 1054–1069 (2015)KpadehZ.Z.DayS.R.MillsB.W.HoffmanP.S.Legionella pneumophila utilizes a single-player disulfide-bond oxidoreductase system to manage disulfide bond formation and isomerizationMol. Microbiol.9510541069201510.1111/mmi.12914441517525534767Search in Google Scholar

Kpadeh Z.Z., Jameson-Lee M., Yeh A.J., Chertihin O., Shumilin I.A., Dey R., Day S.R., Hoffman P.S.: Disulfide bond oxido reductase DsbA2 of Legionella pneumophila exhibits protein disulfide isomerase activity. J. Bacteriol. 195, 1825–1833 (2013)KpadehZ.Z.Jameson-LeeM.YehA.J.ChertihinO.ShumilinI.A.DeyR.DayS.R.HoffmanP.S.Disulfide bond oxido reductase DsbA2 of Legionella pneumophila exhibits protein disulfide isomerase activityJ. Bacteriol.19518251833201310.1128/JB.01949-12362456223435972Search in Google Scholar

Kurth F., Duprez W., Premkumar L., Schembri M.A., Fairlie D.P., Martin J.L.: Crystal structure of the dithiol oxidase DsbA enzyme from Proteus mirabilis bound non-covalently to an active site peptide ligand. J. Biol. Chem. 289, 19810–19822 (2014)KurthF.DuprezW.PremkumarL.SchembriM.A.FairlieD.P.MartinJ.L.Crystal structure of the dithiol oxidase DsbA enzyme from Proteus mirabilis bound non-covalently to an active site peptide ligandJ. Biol. Chem.2891981019822201410.1074/jbc.M114.552380409409024831013Search in Google Scholar

Kurth F., Martin, J.L. i wsp.: Comparative sequence, structure and redox analyses of Klebsiella pneumoniae DsbA show that anti-virulence target DsbA enzymes fall into distinct classes. PLoS One, 8, e80210 (2013)KurthF.MartinJ.L.i wsp.: Comparative sequence, structure and redox analyses of Klebsiella pneumoniae DsbA show that anti-virulence target DsbA enzymes fall into distinct classesPLoS One8e80210201310.1371/journal.pone.0080210382819624244651Search in Google Scholar

Kurz M., Iturbe-Ormaetxe I., Jarrott R., Shouldice S.R., Wouters M.A., Frei P., Glockshuber R., O’Neill S.L., Heras B., Martin J.L.: Structural and functional characterization of the oxidoreductase alpha-DsbA1 from Wolbachia pipientis. Antioxid. Redox Sign. 11, 1485–1500 (2009)KurzM.Iturbe-OrmaetxeI.JarrottR.ShouldiceS.R.WoutersM.A.FreiP.GlockshuberR.O’NeillS.L.HerasB.MartinJ.L.Structural and functional characterization of the oxidoreductase alpha-DsbA1 from Wolbachia pipientisAntioxid. Redox Sign.1114851500200910.1089/ars.2008.242019265485Search in Google Scholar

Lafaye C., Iwema T., Carpentier P., Jullian-Binard C., Kroll J.S., Collet J.F., Serre L.: Biochemical and structural study of the homologues of the thiol-disulfide oxidoreductase DsbA in Neisseria meningitidis. J. Mol. Biol. 392, 952–966 (2009)LafayeC.IwemaT.CarpentierP.Jullian-BinardC.KrollJ.S.ColletJ.F.SerreL.Biochemical and structural study of the homologues of the thiol-disulfide oxidoreductase DsbA in Neisseria meningitidisJ. Mol. Biol.392952966200910.1016/j.jmb.2009.07.05619631659Search in Google Scholar

Landeta C., Boyd D. i wsp.: Compounds targeting disulfide bond forming enzyme DsbB of Gram-negative bacteria. Nat. Chem. Biol. 11, 292–298 (2015)LandetaC.BoydD.i wsp.: Compounds targeting disulfide bond forming enzyme DsbB of Gram-negative bacteriaNat. Chem. Biol.11292298201510.1038/nchembio.1752436628125686372Search in Google Scholar

Landeta C., Boyd D., Beckwith J.: Disulfide bond formation in prokaryotes. Nat. Microbiol. 3, 270–280 (2018)LandetaC.BoydD.BeckwithJ.Disulfide bond formation in prokaryotesNat. Microbiol.3270280201810.1038/s41564-017-0106-229463925Search in Google Scholar

Lester J., Kichler S., Oickle B., Fairweather S., Oberc A., Chahal J., Ratnayake D., Creuzenet C.: Characterization of Helicobacter pylori HP0231 (DsbK): role in disulfide bond formation, redox homeostasis and production of Helicobacter cystein-rich protein HcpE. Mol. Microbiol. 96, 110–133 (2015)LesterJ.KichlerS.OickleB.FairweatherS.ObercA.ChahalJ.RatnayakeD.CreuzenetC.Characterization of Helicobacter pylori HP0231 (DsbK): role in disulfide bond formation, redox homeostasis and production of Helicobacter cystein-rich protein HcpEMol. Microbiol96110133201510.1111/mmi.1292325582190Search in Google Scholar

Lin D., Kim B., Slauch J.M.: DsbL and DsbI contribute to periplasmic disulfide bond formation in Salmonella enterica serovar Typhimurium. Microbiology, 155, 4014–4024 (2009)LinD.KimB.SlauchJ.M.DsbL and DsbI contribute to periplasmic disulfide bond formation in Salmonella enterica serovar TyphimuriumMicrobiology15540144024200910.1099/mic.0.032904-0288942019797361Search in Google Scholar

Manta B., Boyd D., Berkmen M.: Disulfide bond formation in the periplasm of Escherichia coli. EcoSal Plus, 8, DOI: 10.1128/ecosalplus.ESP-0012-2018 (2019)MantaB.BoydD.BerkmenM.Disulfide bond formation in the periplasm of Escherichia coliEcoSal Plus8DOI:10.1128/ecosalplus.ESP-0012-2018201930761987Open DOISearch in Google Scholar

Martin J.L., Bardwell J.C., Kuriyan J.: Crystal structure of the DsbA protein required for disulphide bond formation in vivo. Nature, 365, 464–468 (1993)MartinJ.L.BardwellJ.C.KuriyanJ.Crystal structure of the DsbA protein required for disulphide bond formation in vivoNature365464468199310.1038/365464a08413591Search in Google Scholar

McCarthy A.A., Haebel P.W., Torronen A., Rybin V., Baker E.N., Metcalf P.: Crystal structure of the protein disulfide bond isomerase, DsbC, from Escherichia coli. Nat. Struct. Biol. 7, 196–199 (2000)McCarthyA.A.HaebelP.W.TorronenA.RybinV.BakerE.N.MetcalfP.Crystal structure of the protein disulfide bond isomerase, DsbC, from Escherichia coliNat. Struct. Biol.7196199200010.1038/7329510700276Search in Google Scholar

McMahon R.M., Coincon M., Tay S., Heras B., Morton C.J., Scanlon M.J., Martin J.L.: Sent packing: protein engineering generates a new crystal form of Pseudomonas aeruginosa DsbA1 with increased catalytic surface accessibility. Acta Crystallogr. D Biol. Crystallogr. 71, 2386–2395 (2015)McMahonR.M.CoinconM.TayS.HerasB.MortonC.J.ScanlonM.J.MartinJ.L.Sent packing: protein engineering generates a new crystal form of Pseudomonas aeruginosa DsbA1 with increased catalytic surface accessibilityActa Crystallogr. D Biol. Crystallogr.7123862395201510.1107/S1399004715018519466728326627647Search in Google Scholar

McMahon R.M., Premkumar L., Martin J.L.: Four structural subclasses of the antivirulence drug target disulfide oxidoreductase DsbA provide a platform for design of subclass-specific inhibitors. Biochim. Biophys. Acta. 1844, 1391–1401 (2014)McMahonR.M.PremkumarL.MartinJ.L.Four structural subclasses of the antivirulence drug target disulfide oxidoreductase DsbA provide a platform for design of subclass-specific inhibitorsBiochim. Biophys. Acta.184413911401201410.1016/j.bbapap.2014.01.01324487020Search in Google Scholar

Omasits U., Ahrens C.H., Muller S., Wollscheid B.: Protter: interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics, 30, 884–886 (2014)OmasitsU.AhrensC.H.MullerS.WollscheidB.Protter: interactive protein feature visualization and integration with experimental proteomic dataBioinformatics,30884886201410.1093/bioinformatics/btt60724162465Search in Google Scholar

Pawlowski M., Lasica A.M., Jagusztyn-Krynicka E.K., Bujnicki J.M.: AAN82231 protein from uropathogenic E. coli CFT073 is a close paralog of DsbB enzymes and does not belong to the DsbI family. Pol. J. Microbiol. 58, 181–184 (2009)PawlowskiM.LasicaA.M.Jagusztyn-KrynickaE.K.BujnickiJ.M.AAN82231 protein from uropathogenic E. coli CFT073 is a close paralog of DsbB enzymes and does not belong to the DsbI familyPol. J. Microbiol.581811842009Search in Google Scholar

Paxman J.J., Scanlon M.J. i wsp.: The structure of the bacterial oxidoreductase enzyme DsbA in complex with a peptide reveals a basis for substrate specificity in the catalytic cycle of DsbA enzymes. J. Biol. Chem. 284, 17835–17845 (2009)PaxmanJ.J.ScanlonM.J.i wsp.: The structure of the bacterial oxidoreductase enzyme DsbA in complex with a peptide reveals a basis for substrate specificity in the catalytic cycle of DsbA enzymesJ. Biol. Chem.2841783517845200910.1074/jbc.M109.011502271942219389711Search in Google Scholar

Raczko A.M., Bujnicki J.M., Pawlowski M., Godlewska R., Lewandowska M., Jagusztyn-Krynicka E.K.: Characterization of new DsbB-like thiol-oxidoreductases of Campylobacter jejuni and Helicobacter pylori and classification of the DsbB family based on phylogenomic, structural and functional criteria. Microbiology. 151, 219–231 (2005)RaczkoA.M.BujnickiJ.M.PawlowskiM.GodlewskaR.LewandowskaM.Jagusztyn-KrynickaE.K.Characterization of new DsbB-like thiol-oxidoreductases of Campylobacter jejuni and Helicobacter pylori and classification of the DsbB family based on phylogenomic, structural and functional criteriaMicrobiology.151219231200510.1099/mic.0.27483-015632440Search in Google Scholar

Reid E., Cole J., Eaves D.J.: The Escherichia coli CcmG protein fulfils a specific role in cytochrome c assembly. Biochem. J. 355, 51–58 (2001)ReidE.ColeJ.EavesD.J.The Escherichia coli CcmG protein fulfils a specific role in cytochrome c assemblyBiochem. J.3555158200110.1042/bj3550051Search in Google Scholar

Roos G., Foloppe N., Messens J.: Understanding the pK(a) of redox cysteines: the key role of hydrogen bonding. Antioxid. Redox. Signal. 18, 94–127 (2013)RoosG.FoloppeN.MessensJ.Understanding the pK(a) of redox cysteines: the key role of hydrogen bondingAntioxid. Redox. Signal.1894127201310.1089/ars.2012.452122746677Search in Google Scholar

Roszczenko P., Grzeszczuk M., Kobierecka P., Wywial E., Urbanowicz P., Wincek P., Nowak E., Jagusztyn-Krynicka E.K.: Helicobacter pylori HP0377, a member of the Dsb family, is an untypical multifunctional CcmG that cooperates with dimeric thioldisulfide oxidase HP0231. BMC Microbiol. 15, 135 (2015)RoszczenkoP.GrzeszczukM.KobiereckaP.WywialE.UrbanowiczP.WincekP.NowakE.Jagusztyn-KrynickaE.K.Helicobacter pylori HP0377, a member of the Dsb family, is an untypical multifunctional CcmG that cooperates with dimeric thioldisulfide oxidase HP0231BMC Microbiol15135201510.1186/s12866-015-0471-z449121026141380Search in Google Scholar

Roszczenko P., Radomska K.A., Wywial E., Collet J.F., Jagusztyn-Krynicka E.K.: A novel insight into the oxidoreductase activity of Helicobacter pylori HP0231 protein. PLoS One, 7, e46563 (2012)RoszczenkoP.RadomskaK.A.WywialE.ColletJ.F.Jagusztyn-KrynickaE.K.A novel insight into the oxidoreductase activity of Helicobacter pylori HP0231 proteinPLoS One7e46563201210.1371/journal.pone.0046563346356123056345Search in Google Scholar

Schierle C.F., Berkmen M., Huber D., Kumamoto C., Boyd D., Beckwith J.: The DsbA signal sequence directs efficient, cotranslational export of passenger proteins to the Escherichia coli periplasm via the signal recognition particle pathway. J. Bacteriol. 185, 5706–5713 (2003)SchierleC.F.BerkmenM.HuberD.KumamotoC.BoydD.BeckwithJ.The DsbA signal sequence directs efficient, cotranslational export of passenger proteins to the Escherichia coli periplasm via the signal recognition particle pathwayJ. Bacteriol.18557065713200310.1128/JB.185.19.5706-5713.200319396413129941Search in Google Scholar

Shouldice S.R., Heras B., Walden P.M., Totsika M., Schembri M.A., Martin J.L.: Structure and function of DsbA, a key bacterial oxidative folding catalyst. Antioxid. Redox. Signal. 14, 1729–1760 (2011)ShouldiceS.R.HerasB.WaldenP.M.TotsikaM.SchembriM.A.MartinJ.L.Structure and function of DsbA, a key bacterial oxidative folding catalystAntioxid. Redox. Signal.1417291760201110.1089/ars.2010.334421241169Search in Google Scholar

Smith R.P., Paxman J.J., Scanlon M.J., Heras B.: Targeting Bacterial Dsb Proteins for the Development of Anti-Virulence Agents. Molecules, 21, DOI: 10.3390/molecules21070811 (2016)SmithR.P.PaxmanJ.J.ScanlonM.J.HerasB.Targeting Bacterial Dsb Proteins for the Development of Anti-Virulence AgentsMolecules21DOI:10.3390/molecules210708112016627389327438817Open DOISearch in Google Scholar

Totsika M., Vagenas D., Paxman J.J., Wang G., Dhouib R., Sharma P., Martin J.L., Scanlon M.J., Heras B.: Inhibition of Diverse DsbA Enzymes in Multi-DsbA Encoding Pathogens. Antioxid. Redox. Signal. 29, 653–666 (2018)TotsikaM.VagenasD.PaxmanJ.J.WangG.DhouibR.SharmaP.MartinJ.L.ScanlonM.J.HerasB.Inhibition of Diverse DsbA Enzymes in Multi-DsbA Encoding PathogensAntioxid. Redox. Signal.29653666201810.1089/ars.2017.7104606768629237285Search in Google Scholar

Turcot I., Ponnampalam T.V., Bouwman C.W., Martin N.L.: Isolation and characterization of a chromosomally encoded disulphide oxidoreductase from Salmonella enterica serovar Typhimurium. Can. J. Microbiol. 47, 711–721 (2001)TurcotI.PonnampalamT.V.BouwmanC.W.MartinN.L.Isolation and characterization of a chromosomally encoded disulphide oxidoreductase from Salmonella enterica serovar TyphimuriumCan. J. Microbiol.47711721200110.1139/w01-071Search in Google Scholar

Vivian J.P., Scanlon M.J. i wsp: Structure and function of the oxidoreductase DsbA1 from Neisseria meningitidis. J. Mol. Biol. 394, 931–943 (2009)VivianJ.P.ScanlonM.J.i wsp: Structure and function of the oxidoreductase DsbA1 from Neisseria meningitidisJ. Mol. Biol.394931943200910.1016/j.jmb.2009.09.06519815019Search in Google Scholar

Vivian J.P., Scanlon, M.J. i wsp.: Structural and biochemical characterization of the oxidoreductase NmDsbA3 from Neisseria meningitidis. J. Biol. Chem. 283, 32452–32461 (2008)VivianJ.P.ScanlonM.J.i wsp.: Structural and biochemical characterization of the oxidoreductase NmDsbA3 from Neisseria meningitidisJ. Biol. Chem.2833245232461200810.1074/jbc.M80399020018715864Search in Google Scholar

Walden P.M., Heras B., Chen K.E., Halili M.A., Rimmer K., Sharma P., Scanlon M.J., Martin J.L.: The 1.2 A resolution crystal structure of TcpG, the Vibrio cholerae DsbA disulfide-forming protein required for pilus and cholera-toxin production. Acta Crystallogr. D Biol. Crystallogr. 68, 1290–1302 (2012)WaldenP.M.HerasB.ChenK.E.HaliliM.A.RimmerK.SharmaP.ScanlonM.J.MartinJ.L.The 1.2 A resolution crystal structure of TcpG, the Vibrio cholerae DsbA disulfide-forming protein required for pilus and cholera-toxin productionActa Crystallogr. D Biol. Crystallogr.6812901302201210.1107/S090744491202638822993083Search in Google Scholar

Yoon J.Y., Suh S.W. i wsp.: Structural and functional charac terization of HP0377, a thioredoxin-fold protein from Helicobacter pylori. Acta Crystallogr. D Biol. Crystallogr. 69, 735–746 (2013)YoonJ.Y.SuhS.W.i wsp.: Structural and functional charac terization of HP0377, a thioredoxin-fold protein from Helicobacter pyloriActa Crystallogr. D Biol. Crystallogr.69735746201310.1107/S090744491300123623633582Search in Google Scholar

Yoon J.Y., Kim J., Lee S.J., Kim H.S., Im H.N., Yoon H.J., Kim K.H., Kim S.J., Han B.W., Suh S.W.: Structural and functional characterization of Helicobacter pylori DsbG. FEBS Lett. 585, 3862–3867 (2011)YoonJ.Y.KimJ.LeeS.J.KimH.S.ImH.N.YoonH.J.KimK.H.KimS.J.HanB.W.SuhS.W.Structural and functional characterization of Helicobacter pylori DsbGFEBS Lett.58538623867201110.1016/j.febslet.2011.10.04222062156Search in Google Scholar

Yu J.: Inactivation of DsbA, but not DsbC and DsbD, affects the intracellular survival and virulence of Shigella flexneri. Infect. Immun. 66, 3909–3917 (1998)YuJ.Inactivation of DsbA, but not DsbC and DsbD, affects the intracellular survival and virulence of Shigella flexneriInfect. Immun.6639093917199810.1128/IAI.66.8.3909-3917.19981084499673279Search in Google Scholar

Zhong Y., Anderl F., Kruse T., Schindele F., Jagusztyn-Krynicka E.K., Fischer W., Gerhard M., Mejias-Luque R.: Helicobacter pylori HP0231 Influences Bacterial Virulence and Is Essential for Gastric Colonization. PLoS One, 11, e0154643 (2016)ZhongY.AnderlF.KruseT.SchindeleF.Jagusztyn-KrynickaE.K.FischerW.GerhardM.Mejias-LuqueR.Helicobacter pylori HP0231 Influences Bacterial Virulence and Is Essential for Gastric ColonizationPLoS One11e0154643201610.1371/journal.pone.0154643485443927138472Search in Google Scholar

Zhou Y., Cierpicki T., Jimenez R.H., Lukasik S.M., Ellena J.F., Cafiso D.S., Kadokura H., Beckwith J., Bushweller J.H.: NMR solution structure of the integral membrane enzyme DsbB: functional insights into DsbB-catalyzed disulfide bond formation. Mol. Cell. 31, 896–908 (2008)ZhouY.CierpickiT.JimenezR.H.LukasikS.M.EllenaJ.F.CafisoD.S.KadokuraH.BeckwithJ.BushwellerJ.H.NMR solution structure of the integral membrane enzyme DsbB: functional insights into DsbB-catalyzed disulfide bond formationMol. Cell.31896908200810.1016/j.molcel.2008.08.028262243518922471Search in Google Scholar

eISSN:
2545-3149
Lingue:
Inglese, Polacco
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Life Sciences, Microbiology and Virology