Whole rock major element influences on monazite growth: examples from igneous and metamorphic rocks in the Menderes Massif, western Turkey
Monazite (LREEPO4) is a radiogenic, rare-earth bearing mineral commonly used for geochronology. Here we examine the control of major element chemistry in influencing the crystallization of monazite in granites (Salihli and Turgutlu bodies) and garnet-bearing metamorphic assemblages (Bozdag and Bayindir nappes) from the Menderes Massif, western Turkey. In S-type granites from the massif, the presence of monazite correlates to the CaO and Al2O3 content of the whole rock. Granites with monazite only are low Ca (0.6-1.8 wt% CaO). As CaO increases (from 2.1-4.6 wt%), allanite [(Ce, Ca, Y)2(Al, Fe3+)3(SiO4)3 (OH)] is present. Higher Al2O3 (>15 wt%) rocks contain allanite and/or monazite, whereas those with lower Al2O3 contain monazite only. However, examining data reported elsewhere for A-type granites, the correlation between major element chemistry and presence of monazite is likely restricted to S-type lithologies. Pelitic schists of the Menderes Massif show no correlation between major element chemistry and presence of monazite. One Bayindir nappe sample contains both prograde garnets and those affected significantly by diffusion. These rocks have likely experienced a complicated multi-stage tectonic history, which influenced their current mineral assemblages. The presence of monazite in a metamorphic rock can be influenced by the number, duration, and nature of events that were experienced and the degree to which fluids were involved. The source of monazite in the Bayindir and Bozdag samples was likely reactions that involved allanite. These reactions may not have significantly changed the bulk composition of the rock.
Synchrotron microanalytical methods in the study of trace and minor elements in apatite
Synchrotron X-ray facilities have the capability for numerous microanalytical methods with spatial resolutions in the micron to submicron range and sensitivities as low as ppm to ppb. These capabilities are the result of a high X-ray brilliance (many orders of magnitude greater than standard tube and rotating anode sources); a continuous, or white, spectrum through the hard X-ray region; high degrees of X-ray columniation and polarization; and new developments in X-ray focusing methods. The high photon flux and pulsed nature of the source also allow for rapid data collection and high temporal resolution in certain experiments. Of particular interest to geoscientists are X-ray fluorescence microprobes which allow for numerous analytical techniques including X-ray fluorescence (XRF) analysis of trace element concentrations and distributions; X-ray absorption spectroscopy (XAS) for chemical speciation, structural and oxidation state information; X-ray diffraction (XRD) for phase identification; and fluorescence microtomography (CMT) for mapping the internal structure of porous or composite materials as well as elemental distributions (Newville et al. 1999; Sutton et al. 2002; Sutton et al. 2004).
We have employed several synchrotron based microanalytical methods including XRF, microEXAFS (Extended X-ray Absorption Fine Structure), microXANES (X-ray Absorption Near Edge Structure) and CMT for the study of minor and trace elements in apatite (and other minerals). We have also been conducting time resolved X-ray diffraction to study nucleation of and phase transformations among precursor phases in the formation of apatite from solution at earth surface conditions. Summaries of these studies are given to exemplify the capabilities of synchrotron microanalytical techniques.
Thermochemical characterization of Ca4La6(SiO4)6(OH)2 a synthetic La- and OH-analogous of britholite: implication for monazite and LREE apatites stability
In this contribution, monazite (LREEPO4) solubility is addressed in a chemical system involving REE-bearing hydroxylapatite, (Ca, LREE)10(PO4,SiO4)6(OH)2. For this purpose, a synthetic (La)- and (OH)-analogous of britholite, Ca4La6(SiO4)6(OH)2, was synthesised and its thermodynamic properties were measured. Formation enthalpy of -14,618.4±31.0 kJ·mol-1 was obtained by high-temperature drop-solution calorimetry using a Tian-calvet twin calorimeter (Bochum, Germany) at 975 K using lead borate as solvent. Heat capacities (Cp) were measured in the 143-323 K and 341-623 K ranges with an automated Perkin-Elmer DSC 7. For calculations of solubility diagrams at 298 K, the GEMS program was used because it takes into account solid solutions. In conditions representative of those expected in nuclear waste disposal, calculations show that La-monazite is stable from pH = 4 to 9 with a minimum of solubility at pH = 7. La-bearing hydroxylapatite precipitates at pH > 7 with a nearly constant composition of 99% hydroxylapatite and 1% La-britholite. Each mineral buffers solution at extremely low lanthanum concentrations (log{La} = 10-10-10-15 mol·kg-1 for pH = 4 to 13). In terms of chemical durability, both La-monazite and La-rich apatite present low solubility, a requisite property for nuclear-waste forms.
Genesis and stability of accessory phosphates in silicic magmatic rocks: a Western Carpathian case study
The formation of accessory phosphates in granites reflects many chemical and physical factors, including magma composition, oxidation state, concentrations of volatiles and degree of differentiation. The geotectonic setting of granites can be judged from the distribution and character of their phosphates. Robust apatite crystallization is typical of the early magmatic crystallization of I-type granitoids, and of late magmatic stages when increased Ca activity may occur due to the release of anorthite from plagioclase. Although S-type granites also accumulate apatite in the early stages, increasing phosphorus in late differentiates is common due to their high ASI. The apatite from the S-types is enriched in Mn compared to that in I-type granites. A-type granites characteristically contain minor amounts of apatite due to low P concentrations in their magmas. Monazite is typical of S-type granites but it can also become stable in late I-type differentiates. Huttonite contents in monazite correlate roughly positively with temperature. The cheralite molecule seems to be highest in monazite from the most evolved granites enriched in B and F. Magmatic xenotime is common mainly in the S-type granites, but crystallization of secondary xenotime is not uncommon. The formation of the berlinite molecule in feldspars in peraluminous melts may suppress phosphate precipitation and lead to distributional inhomogeneities. Phosphate mobility commonly leads to the formation of phosphate veinlets in and outside granite bodies. The stability of phosphates in the superimposed, metamorphic processes is restricted. Both monazite-(Ce) and xenotime-(Y) are unstable during fluid-activated overprinting. REE accessories, especially monazite and allanite, show complex replacement patterns culminating in late allanite and epidote formation.
Whole rock major element influences on monazite growth: examples from igneous and metamorphic rocks in the Menderes Massif, western Turkey
Monazite (LREEPO4) is a radiogenic, rare-earth bearing mineral commonly used for geochronology. Here we examine the control of major element chemistry in influencing the crystallization of monazite in granites (Salihli and Turgutlu bodies) and garnet-bearing metamorphic assemblages (Bozdag and Bayindir nappes) from the Menderes Massif, western Turkey. In S-type granites from the massif, the presence of monazite correlates to the CaO and Al2O3 content of the whole rock. Granites with monazite only are low Ca (0.6-1.8 wt% CaO). As CaO increases (from 2.1-4.6 wt%), allanite [(Ce, Ca, Y)2(Al, Fe3+)3(SiO4)3 (OH)] is present. Higher Al2O3 (>15 wt%) rocks contain allanite and/or monazite, whereas those with lower Al2O3 contain monazite only. However, examining data reported elsewhere for A-type granites, the correlation between major element chemistry and presence of monazite is likely restricted to S-type lithologies. Pelitic schists of the Menderes Massif show no correlation between major element chemistry and presence of monazite. One Bayindir nappe sample contains both prograde garnets and those affected significantly by diffusion. These rocks have likely experienced a complicated multi-stage tectonic history, which influenced their current mineral assemblages. The presence of monazite in a metamorphic rock can be influenced by the number, duration, and nature of events that were experienced and the degree to which fluids were involved. The source of monazite in the Bayindir and Bozdag samples was likely reactions that involved allanite. These reactions may not have significantly changed the bulk composition of the rock.
Synchrotron microanalytical methods in the study of trace and minor elements in apatite
Synchrotron X-ray facilities have the capability for numerous microanalytical methods with spatial resolutions in the micron to submicron range and sensitivities as low as ppm to ppb. These capabilities are the result of a high X-ray brilliance (many orders of magnitude greater than standard tube and rotating anode sources); a continuous, or white, spectrum through the hard X-ray region; high degrees of X-ray columniation and polarization; and new developments in X-ray focusing methods. The high photon flux and pulsed nature of the source also allow for rapid data collection and high temporal resolution in certain experiments. Of particular interest to geoscientists are X-ray fluorescence microprobes which allow for numerous analytical techniques including X-ray fluorescence (XRF) analysis of trace element concentrations and distributions; X-ray absorption spectroscopy (XAS) for chemical speciation, structural and oxidation state information; X-ray diffraction (XRD) for phase identification; and fluorescence microtomography (CMT) for mapping the internal structure of porous or composite materials as well as elemental distributions (Newville et al. 1999; Sutton et al. 2002; Sutton et al. 2004).
We have employed several synchrotron based microanalytical methods including XRF, microEXAFS (Extended X-ray Absorption Fine Structure), microXANES (X-ray Absorption Near Edge Structure) and CMT for the study of minor and trace elements in apatite (and other minerals). We have also been conducting time resolved X-ray diffraction to study nucleation of and phase transformations among precursor phases in the formation of apatite from solution at earth surface conditions. Summaries of these studies are given to exemplify the capabilities of synchrotron microanalytical techniques.
Thermochemical characterization of Ca4La6(SiO4)6(OH)2 a synthetic La- and OH-analogous of britholite: implication for monazite and LREE apatites stability
In this contribution, monazite (LREEPO4) solubility is addressed in a chemical system involving REE-bearing hydroxylapatite, (Ca, LREE)10(PO4,SiO4)6(OH)2. For this purpose, a synthetic (La)- and (OH)-analogous of britholite, Ca4La6(SiO4)6(OH)2, was synthesised and its thermodynamic properties were measured. Formation enthalpy of -14,618.4±31.0 kJ·mol-1 was obtained by high-temperature drop-solution calorimetry using a Tian-calvet twin calorimeter (Bochum, Germany) at 975 K using lead borate as solvent. Heat capacities (Cp) were measured in the 143-323 K and 341-623 K ranges with an automated Perkin-Elmer DSC 7. For calculations of solubility diagrams at 298 K, the GEMS program was used because it takes into account solid solutions. In conditions representative of those expected in nuclear waste disposal, calculations show that La-monazite is stable from pH = 4 to 9 with a minimum of solubility at pH = 7. La-bearing hydroxylapatite precipitates at pH > 7 with a nearly constant composition of 99% hydroxylapatite and 1% La-britholite. Each mineral buffers solution at extremely low lanthanum concentrations (log{La} = 10-10-10-15 mol·kg-1 for pH = 4 to 13). In terms of chemical durability, both La-monazite and La-rich apatite present low solubility, a requisite property for nuclear-waste forms.
Genesis and stability of accessory phosphates in silicic magmatic rocks: a Western Carpathian case study
The formation of accessory phosphates in granites reflects many chemical and physical factors, including magma composition, oxidation state, concentrations of volatiles and degree of differentiation. The geotectonic setting of granites can be judged from the distribution and character of their phosphates. Robust apatite crystallization is typical of the early magmatic crystallization of I-type granitoids, and of late magmatic stages when increased Ca activity may occur due to the release of anorthite from plagioclase. Although S-type granites also accumulate apatite in the early stages, increasing phosphorus in late differentiates is common due to their high ASI. The apatite from the S-types is enriched in Mn compared to that in I-type granites. A-type granites characteristically contain minor amounts of apatite due to low P concentrations in their magmas. Monazite is typical of S-type granites but it can also become stable in late I-type differentiates. Huttonite contents in monazite correlate roughly positively with temperature. The cheralite molecule seems to be highest in monazite from the most evolved granites enriched in B and F. Magmatic xenotime is common mainly in the S-type granites, but crystallization of secondary xenotime is not uncommon. The formation of the berlinite molecule in feldspars in peraluminous melts may suppress phosphate precipitation and lead to distributional inhomogeneities. Phosphate mobility commonly leads to the formation of phosphate veinlets in and outside granite bodies. The stability of phosphates in the superimposed, metamorphic processes is restricted. Both monazite-(Ce) and xenotime-(Y) are unstable during fluid-activated overprinting. REE accessories, especially monazite and allanite, show complex replacement patterns culminating in late allanite and epidote formation.