Published Online: 30 Dec 2014 Page range: 229 - 242
Abstract
Abstract
The estimation of the generalization error of a trained classifier by means of a test set is one of the oldest problems in pattern recognition and machine learning. Despite this problem has been addressed for several decades, it seems that the last word has not been written yet, because new proposals continue to appear in the literature. Our objective is to survey and compare old and new techniques, in terms of quality of the estimation, easiness of use, and rigorousness of the approach, so to understand if the new proposals represent an effective improvement on old ones.
Published Online: 30 Dec 2014 Page range: 243 - 250
Abstract
Abstract
Prompt and proper management of healthcare waste is critical to minimize the negative impact on the environment. Improving the prediction accuracy of the healthcare waste generated in hospitals is essential and advantageous in effective waste management. This study aims at developing a model to predict the amount of healthcare waste. For this purpose, three models based on artificial neural network (ANN), multiple linear regression (MLR), and combination of ANN and genetic algorithm (ANN-GA) are applied to predict the waste of 50 hospitals in Iran. In order to improve the performance of ANN for prediction, GA is applied to find the optimal initial weights in the ANN. The performance of the three models is evaluated by mean squared errors. The obtained results have shown that GA has significant impact on optimizing initial weights and improving the performance of ANN.
Published Online: 30 Dec 2014 Page range: 251 - 263
Abstract
Abstract
This paper presents a comparative analysis of complexity between the B-TREE and the Binary Search Algorithms, both theoretically and experimentally, to evaluate their efficiency in finding overlap of classes for students and teachers in the University Course Timetabling Problem (UCTP). According to the theory, B-TREE Search complexity is lower than Binary Search. The performed experimental tests showed the B-TREE Search Algorithm is more efficient than Binary Search, but only using a dataset larger than 75 students per classroom.
Published Online: 30 Dec 2014 Page range: 265 - 276
Abstract
Abstract
In this research, a new method for automatic detection and classification of suspected breast cancer lesions using ultrasound images is proposed. In this fully automated method, de-noising using fuzzy logic and correlation among ultrasound images taken from different angles is used. Feature selection using combination of sequential backward search, sequential forward search and distance-based methods is obtained. A new segmentation method based on automatic selection of seed points and region growing is proposed and classification of lesions into two malignant and benign classes using combination of AdaBoost, Artificial Neural Network and Fuzzy Support Vector Machine classifiers and majority voting is implemented.
Published Online: 30 Dec 2014 Page range: 277 - 289
Abstract
Abstract
This work presents an analysis of Higher Order Singular Value Decomposition (HOSVD) applied to reduction of dimensionality of 3D mesh animations. Compression error is measured using three metrics (MSE, Hausdorff, MSDM). Results are compared with a method based on Principal Component Analysis (PCA) and presented on a set of animations with typical mesh deformations.
The estimation of the generalization error of a trained classifier by means of a test set is one of the oldest problems in pattern recognition and machine learning. Despite this problem has been addressed for several decades, it seems that the last word has not been written yet, because new proposals continue to appear in the literature. Our objective is to survey and compare old and new techniques, in terms of quality of the estimation, easiness of use, and rigorousness of the approach, so to understand if the new proposals represent an effective improvement on old ones.
Prompt and proper management of healthcare waste is critical to minimize the negative impact on the environment. Improving the prediction accuracy of the healthcare waste generated in hospitals is essential and advantageous in effective waste management. This study aims at developing a model to predict the amount of healthcare waste. For this purpose, three models based on artificial neural network (ANN), multiple linear regression (MLR), and combination of ANN and genetic algorithm (ANN-GA) are applied to predict the waste of 50 hospitals in Iran. In order to improve the performance of ANN for prediction, GA is applied to find the optimal initial weights in the ANN. The performance of the three models is evaluated by mean squared errors. The obtained results have shown that GA has significant impact on optimizing initial weights and improving the performance of ANN.
This paper presents a comparative analysis of complexity between the B-TREE and the Binary Search Algorithms, both theoretically and experimentally, to evaluate their efficiency in finding overlap of classes for students and teachers in the University Course Timetabling Problem (UCTP). According to the theory, B-TREE Search complexity is lower than Binary Search. The performed experimental tests showed the B-TREE Search Algorithm is more efficient than Binary Search, but only using a dataset larger than 75 students per classroom.
In this research, a new method for automatic detection and classification of suspected breast cancer lesions using ultrasound images is proposed. In this fully automated method, de-noising using fuzzy logic and correlation among ultrasound images taken from different angles is used. Feature selection using combination of sequential backward search, sequential forward search and distance-based methods is obtained. A new segmentation method based on automatic selection of seed points and region growing is proposed and classification of lesions into two malignant and benign classes using combination of AdaBoost, Artificial Neural Network and Fuzzy Support Vector Machine classifiers and majority voting is implemented.
This work presents an analysis of Higher Order Singular Value Decomposition (HOSVD) applied to reduction of dimensionality of 3D mesh animations. Compression error is measured using three metrics (MSE, Hausdorff, MSDM). Results are compared with a method based on Principal Component Analysis (PCA) and presented on a set of animations with typical mesh deformations.